分析 (1)设出A,B的坐标,代入椭圆方程,利用“点差法”求出AB所在直线的斜率,再由直线方程的点斜式得答案;
(2)联立直线方程和椭圆方程,求出A,B的坐标,由两点间的距离公式求解.
解答 解:(1)设A(x1,y1),B(x2,y2),
则$\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{3}=1$,$\frac{{{x}_{2}}^{2}}{4}+\frac{{{y}_{2}}^{2}}{3}=1$,
两式作差得:$\frac{{{x}_{1}}^{2}}{4}-\frac{{{x}_{2}}^{2}}{4}=\frac{{{y}_{2}}^{2}}{3}-\frac{{{y}_{1}}^{2}}{3}$,
即$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{4}=-\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{3}$,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=-\frac{3({x}_{1}+{x}_{2})}{4({y}_{1}+{y}_{2})}$,
∵M(1,$\frac{\sqrt{3}}{2}$)弦AB的中点,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=-\frac{3×2}{4×\sqrt{3}}=-\frac{\sqrt{3}}{2}$.
∴所求直线l的方程:y-$\frac{\sqrt{3}}{2}$=$-\frac{\sqrt{3}}{2}(x-1)$,即y=-$\frac{\sqrt{3}}{2}x+\sqrt{3}$;
(2)联立$\left\{\begin{array}{l}{y=-\frac{\sqrt{3}}{2}x+\sqrt{3}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=\sqrt{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$.
则|AB|=$\sqrt{(0-2)^{2}+(\sqrt{3}-0)^{2}}=\sqrt{7}$.
点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 42 | B. | 40 | C. | 30 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,3] | B. | (-1,3) | C. | (-∞,-3)∪(1,+∞) | D. | (-∞,-1)∪(3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com