精英家教网 > 高中数学 > 题目详情
4.经过点M(1,$\frac{\sqrt{3}}{2}$)作直线l交椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1于A、B两点,且M为弦AB的中点.
(1)求直线l的方程;
(2)求弦AB的长.

分析 (1)设出A,B的坐标,代入椭圆方程,利用“点差法”求出AB所在直线的斜率,再由直线方程的点斜式得答案;
(2)联立直线方程和椭圆方程,求出A,B的坐标,由两点间的距离公式求解.

解答 解:(1)设A(x1,y1),B(x2,y2),
则$\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{3}=1$,$\frac{{{x}_{2}}^{2}}{4}+\frac{{{y}_{2}}^{2}}{3}=1$,
两式作差得:$\frac{{{x}_{1}}^{2}}{4}-\frac{{{x}_{2}}^{2}}{4}=\frac{{{y}_{2}}^{2}}{3}-\frac{{{y}_{1}}^{2}}{3}$,
即$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{4}=-\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{3}$,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=-\frac{3({x}_{1}+{x}_{2})}{4({y}_{1}+{y}_{2})}$,
∵M(1,$\frac{\sqrt{3}}{2}$)弦AB的中点,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=-\frac{3×2}{4×\sqrt{3}}=-\frac{\sqrt{3}}{2}$.
∴所求直线l的方程:y-$\frac{\sqrt{3}}{2}$=$-\frac{\sqrt{3}}{2}(x-1)$,即y=-$\frac{\sqrt{3}}{2}x+\sqrt{3}$;
(2)联立$\left\{\begin{array}{l}{y=-\frac{\sqrt{3}}{2}x+\sqrt{3}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=\sqrt{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$.
则|AB|=$\sqrt{(0-2)^{2}+(\sqrt{3}-0)^{2}}=\sqrt{7}$.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.数列{an}中,已知Sn=$\frac{n+1}{n}$,则an=$\left\{\begin{array}{l}{2,n=1}\\{-\frac{1}{n(n-1)},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.“a≤-1”是“函数f(x)=ax+2在区间[-1,2]上有零点”的充分不必要条件.(在“充分不必要、必要不充分、充要、既不充分也不必要”中选一个填)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若数列{an}满足$\frac{{{a_{n+1}}}}{2n+5}$-$\frac{a_n}{2n+3}$=1,且a1=5,则数列{an}的前100项中,能被5整除的项数为(  )
A.42B.40C.30D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(文)定义运算$|\begin{array}{l}{a}&{c}\\{b}&{d}\end{array}|$=ad-bc,复数z满足$|\begin{array}{l}{z}&{i}\\{m}&{i}\end{array}|$=1-2i,且z为纯虚数,则实数m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个命题:
①函数是其定义域到值域的映射;
②函数y=2x(x∈N)的图象是一条直线;
③y=x与y=logaax(a>0且a≠1)表示同一个函数;
④函数f(x)=ax+1-1的图象过定点(-1,-1).
正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
( I)求k的值;
( II)设g(x)=log4(a•2x-a),若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=ln(3-x)(x+1)的定义域为(  )
A.[-1,3]B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.利用二阶行列式,讨论两条直线$\left\{\begin{array}{l}{l_1}:({m+3})x+5y=5-3m\\{l_2}:2x+({m+6})y=8\end{array}\right.$的位置关系.

查看答案和解析>>

同步练习册答案