精英家教网 > 高中数学 > 题目详情
13.函数f(x)=ln(3-x)(x+1)的定义域为(  )
A.[-1,3]B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

分析 根据对数函数的性质求出f(x)的定义域即可.

解答 解:由题意得:(3-x)(x+1)>0,
即(x-3)(x+1)<0,
解得:-1<x<3,
故函数的定义域是(-1,3),
故选:B.

点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$),x=-$\frac{π}{4}$为f(x)的零点,x=$\frac{π}{4}$为y=f(x)图象的对称轴,且f(x)在(${\frac{π}{4}$,$\frac{π}{3}}$)单调,则ω的最大值为(  )
A.12B.11C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.经过点M(1,$\frac{\sqrt{3}}{2}$)作直线l交椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1于A、B两点,且M为弦AB的中点.
(1)求直线l的方程;
(2)求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=($\frac{3}{π}$)${\;}^{{x^2}+2x-3}}$的递减区间为  (  )
A.(1,+∞)B.(-∞,1)C.(-∞,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)计算:0.064${\;}^{-\frac{1}{3}}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}}$+0.25${\;}^{\frac{1}{2}}}$;
(2)计算$\frac{2lg2+lg3}{{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式$\frac{4}{x-1}$<x-1的解集是(-1,1)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若不等式|2x-1|-|x+a|≥a对任意的实数x恒成立,则实数a的取值范围是(  )
A.(-∞,-$\frac{1}{3}$]B.(-$\frac{1}{2}$,-$\frac{1}{4}$]C.(-$\frac{1}{2}$,0)D.(-∞,-$\frac{1}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=cos$\frac{π}{2}$x,对任意的实数t,记f(x)在[t,t+1]上的最大值为M(t),最小值为m(t),则函数h(t)=M(t)-m(t)的值域为$[1-\frac{{\sqrt{2}}}{2},\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和Sn=$\frac{1}{2}$n(n-1),且an是bn与1的等差中项.
(1)求数列{an}和数列{bn}的通项公式;
(2)若cn=$\frac{1}{{a}_{n}(n+1)}$(n≥2),求c2+c3+c4+…+cn

查看答案和解析>>

同步练习册答案