精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的前n项和Sn=$\frac{1}{2}$n(n-1),且an是bn与1的等差中项.
(1)求数列{an}和数列{bn}的通项公式;
(2)若cn=$\frac{1}{{a}_{n}(n+1)}$(n≥2),求c2+c3+c4+…+cn

分析 (1)当n=1时,a1=S1=0,当n≥2时,Sn-1=$\frac{1}{2}$(n-1)(n-2),an=Sn-Sn-1,即可求得数列{an}通项公式,由2an=1+bn,求得bn=2n-3;
(2)由(1)可知:cn=$\frac{1}{(n-1)(n+1)}$=$\frac{1}{2}$($\frac{1}{n-1}$-$\frac{1}{n+1}$)(n≥2),采用“裂项法”即可求得c2+c3+c4+…+cn的值.

解答 解:(1)当n=1时,a1=S1=0,
当n≥2时,Sn-1=$\frac{1}{2}$(n-1)(n-2),
∴an=Sn-Sn-1=[$\frac{1}{2}$n(n-1)]-[$\frac{1}{2}$(n-1)(n-2)]=n-1,
当n=1时,成立,
故an=n-1;
an是bn与1的等差中项,
∴2an=1+bn
∴bn=2n-3,
数列{an}通项公式an=n-1,数列{bn}的通项公式bn=2n-3;…(8分)
(2)因为cn=$\frac{1}{{a}_{n}(n+1)}$=$\frac{1}{(n-1)(n+1)}$=$\frac{1}{2}$($\frac{1}{n-1}$-$\frac{1}{n+1}$)(n≥2),…(10分)
∴c2+c3+c4+…+cn
=$\frac{1}{2}$(1-$\frac{1}{3}$)+$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{4}$)+$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)+…+$\frac{1}{2}$($\frac{1}{n-1}$-$\frac{1}{n+1}$),
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$),
=$\frac{3}{4}$-$\frac{2n+1}{2n(n+1)}$.
c2+c3+c4+…+cn=$\frac{3}{4}$-$\frac{2n+1}{2n(n+1)}$.…(12分)

点评 本题考查求数列通项公式的方法,考查等差数列的性质,“裂项法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=ln(3-x)(x+1)的定义域为(  )
A.[-1,3]B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.利用二阶行列式,讨论两条直线$\left\{\begin{array}{l}{l_1}:({m+3})x+5y=5-3m\\{l_2}:2x+({m+6})y=8\end{array}\right.$的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式(x+5)(3-2x)≤6的解集是(  )
A.{x|x≤-1或x$≥\frac{9}{2}$}B.{x|-1≤x$≤\frac{9}{2}$}C.{x|x$≤-\frac{9}{2}$或x≥-1}D.{x|$-\frac{9}{2}≤$ x≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,内角A,B的对边分别是a,b,且A=30°,a=2$\sqrt{2}$,b=4,那么满足条件的△ABC(  )
A.有一个解B.有两个解C.无解D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某林场今年造林10000亩,计划以后每一年比前一年多造林10%,那么从明年算起第3年内将造林13310亩.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{(a-1)x-\frac{1}{2}a,x≤1}\\{(a+1){x}^{2},x>1}\end{array}\right.$为R上的减函数,则实数a的取值范围是(  )
A.(-∞,-1)B.(-∞,-4)C.(-1,-4]D.(-∞,-4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式$\frac{2+x}{2-x}$>0的解集为(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{{a{x^2}+2}}{x+b}$是奇函数,且f(2)=5.
(1)确定函数f(x)的解析式;
(2)判断f(x)在(0,1)上的单调性.

查看答案和解析>>

同步练习册答案