分析 (1)根据题意,由函数的奇偶性的性质可得$\frac{{a{(-x)^2}+2}}{(-x)+b}$=-$\frac{{a{x^2}+2}}{x+b}$,分析可得b=0,又由f(2)=5,则有$\frac{4a+2}{2}$=5,解可得a=2,将a、b的值代入可得f(x)的解析式;
(2)根据题意,设任意的实数x1、x2,且0<x1<x2<1,用作差法计算可得f(x1)-f(x2)=(x1-x2)+($\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$)=(x1-x2)-$\frac{{x}_{1}-{x}_{2}}{{x}_{1}{x}_{2}}$=(x1-x2)[$\frac{{x}_{1}{x}_{2}-1}{{x}_{1}{x}_{2}}$],由x1与x2的范围分析可得f(x1)-f(x2)>0,即可得f(x1)>f(x2),由函数的单调性的性质分析f(x)的单调性.
解答 解:(1)根据题意,函数f(x)=$\frac{{a{x^2}+2}}{x+b}$是奇函数,
则f(-x)=-f(x),
即有$\frac{{a{(-x)^2}+2}}{(-x)+b}$=-$\frac{{a{x^2}+2}}{x+b}$,
即b=0,
又由f(2)=5,则有$\frac{4a+2}{2}$=5,解可得a=2,
故f(x)=$\frac{2{x}^{2}+2}{x}$,
(2)根据题意,设任意的实数x1、x2,且0<x1<x2<1,
f(x1)-f(x2)=(x1-x2)+($\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$)=(x1-x2)-$\frac{{x}_{1}-{x}_{2}}{{x}_{1}{x}_{2}}$=(x1-x2)[$\frac{{x}_{1}{x}_{2}-1}{{x}_{1}{x}_{2}}$],
又由0<x1<x2<1,
则x1-x2<0,x1•x2<1,
故f(x1)-f(x2)=(x1-x2)[$\frac{{x}_{1}{x}_{2}-1}{{x}_{1}{x}_{2}}$]>0,即f(x1)>f(x2),
即f(x)在(0,1)上是减函数.
点评 本题考查函数奇偶性的性质以及函数单调性的判定,关键是充分利用函数的奇偶性的性质分析得到a、b的值.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 数N | 1.010 | 1.015 | 1.017 | 1.310 | 2.000 |
| 对数lgN | 0.004 3 | 0.006 5 | 0.007 3 | 0.117 3 | 0.301 0 |
| 数N | 3.000 | 5.000 | 12.48 | 13.11 | 13.78 |
| 对数lgN | 0.477 1 | 0.699 0 | 1.096 2 | 1.117 6 | 1.139 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com