精英家教网 > 高中数学 > 题目详情
19.(文)定义运算$|\begin{array}{l}{a}&{c}\\{b}&{d}\end{array}|$=ad-bc,复数z满足$|\begin{array}{l}{z}&{i}\\{m}&{i}\end{array}|$=1-2i,且z为纯虚数,则实数m的值为2.

分析 由$|\begin{array}{l}{z}&{i}\\{m}&{i}\end{array}|$=1-2i,得zi-mi=1-2i,然后利用复数代数形式的乘除运算化简复数z,又已知z为纯虚数,得实部等于0,求解即可得答案.

解答 解:由$|\begin{array}{l}{z}&{i}\\{m}&{i}\end{array}|$=1-2i,
得zi-mi=1-2i,即$z=\frac{1-2i+mi}{i}=\frac{-i(1-2i+mi)}{-{i}^{2}}$=-2+m-i,
又z为纯虚数,
∴-2+m=0,
∴m=2.
故答案为:2.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.过△ABC所在平面α外一点P作PO⊥α,垂足为O,连接PA,PB,PC.
①若PA=PB=PC,则点O是P的外心;
②若点P到△ABC三边所在直线的距离都相等,则点O是△ABC的内心;
③若PA⊥PB,PB⊥PC,PA⊥PC,则点O是△ABC的垂心;
④若PA,PB,PC与平面α所成的角都相等,则点O是△ABC的外心;
上面选项中正确的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an},{bn}满足a1=1,b1=2,an+1=$\sqrt{{a_n}{b_n}}$,bn+1=$\frac{{{a_n}+{b_n}}}{2}$,
(1)求证:当n≥2时,an-1≤an≤bn≤bn-1
(2)设Sn为数列{|an-bn|}的前n项和,求证:Sn<$\frac{10}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,角A、B、C的对边分别为a,b,c,若2csinA=atanC,cosB=$\frac{{\sqrt{3}}}{2}$,则角A的大小是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平面直角坐标系中,双曲线$\frac{x^2}{12}$-$\frac{y^2}{4}$=1的右焦点为F,一条过原点O且倾斜角为锐角的直线l与双曲线C交于A,B两点,若△FAB的面积为8$\sqrt{3}$,则直线l的斜率为(  )
A.$\frac{{2\sqrt{13}}}{13}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{{\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.经过点M(1,$\frac{\sqrt{3}}{2}$)作直线l交椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1于A、B两点,且M为弦AB的中点.
(1)求直线l的方程;
(2)求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\sqrt{a{x^2}+2ax+1}$的定义域为R,则实数a的取值范围为(  )
A.(0,1)B.[0,1]C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)计算:0.064${\;}^{-\frac{1}{3}}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}}$+0.25${\;}^{\frac{1}{2}}}$;
(2)计算$\frac{2lg2+lg3}{{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线的倾斜角α∈[${\frac{π}{4}$,$\frac{3π}{4}}$],则其斜率的取值范围是(-∞,-1]∪[1,+∞).

查看答案和解析>>

同步练习册答案