| A. | $\frac{{2\sqrt{13}}}{13}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{{\sqrt{7}}}{7}$ |
分析 设直线l的方程为y=kx,代入双曲线$\frac{x^2}{12}$-$\frac{y^2}{4}$=1,求得得x2-3k2x2=12,求得A,B的横坐标,代入直线方程求得,求得其纵坐标,求出A,B纵坐标差的绝对值,根据△FAB的面积为8$\sqrt{3}$,即可求出直线的斜率.
解答 解:双曲线C:$\frac{x^2}{12}$-$\frac{y^2}{4}$=1的右焦点为F(4,0).
设直线l的方程为y=kx,代入$\frac{x^2}{12}$-$\frac{y^2}{4}$=1,整理得x2-3k2x2=12,
∴x=±$\sqrt{\frac{12}{1-3{k}^{2}}}$,
∴A,B纵坐标差的绝对值为2k$\sqrt{\frac{12}{1-3{k}^{2}}}$,
∵△FAB的面积为8 $\sqrt{3}$,
∴$\frac{1}{2}$•4•2k $\sqrt{\frac{12}{1-3{k}^{2}}}$=8 $\sqrt{3}$,
∴解得:k=$\frac{1}{2}$.
故选:B.
点评 本题考查直线与双曲线的位置关系,考查三角形面积的计算,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲是乙的充分条件,但不是乙的必要条件 | |
| B. | 甲是乙的必要条件,但不是乙的充分条件 | |
| C. | 甲是乙的充要条件 | |
| D. | 甲既不是乙的充分条件,也不是乙的必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m-n-2=0 | B. | m+n-2=0 | C. | m+n-4=0 | D. | m-n+4=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{1}{2}$或$\frac{3}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数y=g[g(x)]是偶函数,函数y=f(x)g(x)是周期函数 | |
| B. | 函数y=g[g(x)]是奇函数,函数y=f[g(x)]不一定是周期函数 | |
| C. | 函数y=g[g(x)]是偶函数,函数y=f[g(x)]是周期函数 | |
| D. | 函数y=g[g(x)]是奇函数,函数y=f(x)g(x)是周期函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com