| A. | 函数y=g[g(x)]是偶函数,函数y=f(x)g(x)是周期函数 | |
| B. | 函数y=g[g(x)]是奇函数,函数y=f[g(x)]不一定是周期函数 | |
| C. | 函数y=g[g(x)]是偶函数,函数y=f[g(x)]是周期函数 | |
| D. | 函数y=g[g(x)]是奇函数,函数y=f(x)g(x)是周期函数 |
分析 令m(x)=g[g(x)],n(x)=f(x)g(x),利用函数的奇偶性的定义,周期函数的定义证明m(x)为奇函数,n(x)=f(x)g(x)一定为周期函数,从而得出结论.
解答 解:∵y=f(x)是R上的偶函数,y=g(x)是R上的奇函数,故有g(-x)=-g(x),且f(-x)=f(x).
令m(x)=g[g(x)],n(x)=f(x)g(x),
则m(-x)=g[g(-x)]=g[-g(x)]-g[g(x)]=-m(x),故m(x)为奇函数,故排除A、C;
∵f(x)和g(x)都是周期函数,设他们的周期的最小公倍数为t,即f(x+t)=f(x),g(x+t)=g(x),
n(x+t)=f(x+t)g(x+t)=f(x)g(x)=n(x),故n(x)=f(x)g(x)一定为周期函数,故排除B,
故选:D.
点评 本题主要考查函数的奇偶性的性质,复合函数的奇偶性、周期性,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{13}}}{13}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{{\sqrt{7}}}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a=7,b=14,A=30° | B. | b=4,c=5,B=30° | C. | b=25,c=3,C=150° | D. | a=$\sqrt{6}$,b=$\sqrt{3}$,B=60° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com