精英家教网 > 高中数学 > 题目详情
19.函数cos($\frac{π}{4}$-x)=$\frac{3}{5}$,那么sin2x=$-\frac{7}{25}$.

分析 利用特殊角的三角函数值,两角差的余弦函数公式化简可得sinx+cosx=$\frac{3\sqrt{2}}{5}$,两边平方利用二倍角的正弦函数公式即可得解sin2x的值.

解答 解:∵cos($\frac{π}{4}$-x)=$\frac{\sqrt{2}}{2}$cosx+$\frac{\sqrt{2}}{2}$sinx=$\frac{3}{5}$,
∴可得:sinx+cosx=$\frac{3\sqrt{2}}{5}$,
∴两边平方可得:1+sin2x=$\frac{18}{25}$,解得:sin2x=$-\frac{7}{25}$.
故答案为:$-\frac{7}{25}$.

点评 本题主要考查了特殊角的三角函数值,两角差的余弦函数公式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若直线mx+2ny-4=0始终平分圆x2+y2-4x+2y-4=0的周长,则m、n的关系是(  )
A.m-n-2=0B.m+n-2=0C.m+n-4=0D.m-n+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=|x2-4x+3|,x∈R.
(1)在区间[0,4]上画出函数f(x)的图象;
(2)写出该函数在R上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.关于x的不等式|x+10|≥8的解集为(-∞,-18]∪[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.学校对同时从高一,高二,高三三个不同年级的某些学生进行抽样调查,从各年级抽出人数如表所示.工作人员用分层抽样的方法从这些学生中共抽取6人进行调查
年级高一高二高三
数量50150100
(1)求这6位学生来自高一,高二,高三各年级的数量;
(2)若从这6位学生中随机抽取2人再做进一步的调查,求这2人来自同一年级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若y=f(x)是R上的偶函数,y=g(x)是R上的奇函数,它们都是周期函数,则下列一定正确的是(  )
A.函数y=g[g(x)]是偶函数,函数y=f(x)g(x)是周期函数
B.函数y=g[g(x)]是奇函数,函数y=f[g(x)]不一定是周期函数
C.函数y=g[g(x)]是偶函数,函数y=f[g(x)]是周期函数
D.函数y=g[g(x)]是奇函数,函数y=f(x)g(x)是周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,|${\overrightarrow{BA}}$|=1,|${\overrightarrow{AC}}$|=2,且$\overrightarrow{BA}$与$\overrightarrow{AC}$的夹角为$\frac{2π}{3}$,则BC边上的中线AD的长为$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为空集;命题乙:方程x2+$\sqrt{2}$ax-(a-4)=0有两个不相等的实根.
(1)若甲,乙都是真命题,求实数a的取值范围;
(2)若甲,乙中有且只有一个是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-2,(x≤1)}\\{lo{g}_{3}(x-1),(x>1)}\end{array}\right.$,则f(f($\frac{5}{3}$))=(  )
A.$\frac{5}{3}$B.$\frac{2}{3}$C.-$\frac{5}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

同步练习册答案