精英家教网 > 高中数学 > 题目详情
9.函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-2,(x≤1)}\\{lo{g}_{3}(x-1),(x>1)}\end{array}\right.$,则f(f($\frac{5}{3}$))=(  )
A.$\frac{5}{3}$B.$\frac{2}{3}$C.-$\frac{5}{3}$D.-$\frac{4}{3}$

分析 先求出f($\frac{5}{3}$)=log3$\frac{2}{3}$,从而f(f($\frac{5}{3}$))=f($lo{g}_{3}\frac{2}{3}$),由此能求出结果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{3}^{x}-2,(x≤1)}\\{lo{g}_{3}(x-1),(x>1)}\end{array}\right.$,
∴f($\frac{5}{3}$)=log3$\frac{2}{3}$,
f(f($\frac{5}{3}$))=f($lo{g}_{3}\frac{2}{3}$)
=${3}^{lo{g}_{3}\frac{2}{3}}$-2=$\frac{2}{3}-2=-\frac{4}{3}$.
故选:D.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.函数cos($\frac{π}{4}$-x)=$\frac{3}{5}$,那么sin2x=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A(1,1)和坐标原点O,若点B(x,y)满足$\left\{\begin{array}{l}{x+2y≥8}\\{2x-y+3≥0}\\{x-y≤3}\end{array}\right.$,则x2+y2-2x-2y的最小值是(  )
A.$\sqrt{5}$-2B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设有限集合A={a1,a2,..,an},则a1+a2+…+an叫做集合A的和,记作SA,若集合P={x|x=2n-1,n∈N*,n≤4},集合P的含有3个元素的全体子集分别记为P1,P2,…,Pk,则P1+P2+…+Pk=48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}中,a1=1,an+1=$\frac{a_n}{{1+2{a_n}}}$,则a6=$\frac{1}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知U={x|x>-1},A={x||x-2|<1},则∁UA={x|-1<x≤1或x≥3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设关于x的方程x2+px-12=0和x2+qx+r=0的解集分别是A、B,且A≠B.A∪B={-3,2,4},A∩B={-3}.求p,q,r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x∈N|1≤x≤10},B是A的子集,且B中各元素的和为8,则满足条件的集合B共有(  )
A.8个B.7个C.6个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{OP}$=(2cos($\frac{π}{2}$+x),1),$\overrightarrow{OQ}$=(sin($\frac{3π}{2}$-x),cos2x),定义函数f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$
(1)求函数f(x)的表达式,并指出其最值;
(2)已知$f(\frac{x}{2})=\frac{1}{5},x∈(-\frac{π}{2},0),求f(-\frac{x}{2})$.
(3)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC的面积S.

查看答案和解析>>

同步练习册答案