精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{OP}$=(2cos($\frac{π}{2}$+x),1),$\overrightarrow{OQ}$=(sin($\frac{3π}{2}$-x),cos2x),定义函数f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$
(1)求函数f(x)的表达式,并指出其最值;
(2)已知$f(\frac{x}{2})=\frac{1}{5},x∈(-\frac{π}{2},0),求f(-\frac{x}{2})$.
(3)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC的面积S.

分析 (1)利用向量的数量积以及二倍角公式,两角和的正弦函数化简函数为一个角的一个三角函数的形式f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$);
(2)代入求值即可;
(3)由f(A)=1,根据第一问化简得到的函数的解析式,利用特殊角的三角函数值求出A的度数,由三角形为锐角三角形得到满足题意的A的度数,可得出sinA的值,再由bc的值,利用三角形的面积公式即可求出三角形ABC的面积S.

解答 解:(1)∵f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$
=(-2sinx,1)•(-cosx,cos2x)=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴f(x)的最大值和最小值分别是$\sqrt{2}$和-$\sqrt{2}$.
(2)∵x∈(-$\frac{π}{2}$,0),
∴cosx>0>sinx,
∵f($\frac{x}{2}$)=$\sqrt{2}$sin(x+$\frac{π}{4}$)=sinx+cosx=$\frac{1}{5}$,
∴2sinxcosx=-$\frac{12}{25}$,
∴f(-$\frac{x}{2}$)=$\sqrt{2}$sin(-x+$\frac{π}{4}$)=cosx-sinx=$\sqrt{(sinx+cosx)^{2}-4sinxcosx}$
=$\sqrt{\frac{1}{25}+\frac{48}{25}}$=$\frac{7}{5}$;
(3)∵f(A)=1,
∴sin(2A+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
∴2A+$\frac{π}{4}$=$\frac{π}{4}$或2A+$\frac{π}{4}$=$\frac{3π}{4}$.
∴A=$\frac{π}{4}$或A=0(舍).
∵bc=8,
∴△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×8×$\frac{\sqrt{2}}{2}$=2$\sqrt{2}$.

点评 此题考查了平面向量的数量积运算,二倍角的正弦函数公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,三角形的面积公式,以及特殊角的三角函数值,熟练掌握公式及法则是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-2,(x≤1)}\\{lo{g}_{3}(x-1),(x>1)}\end{array}\right.$,则f(f($\frac{5}{3}$))=(  )
A.$\frac{5}{3}$B.$\frac{2}{3}$C.-$\frac{5}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,AB为圆O的直径,过点B作圆O的切线BC,任取圆O上异于A、B的一点E,连接AE并延长交BC于点C,过点E作圆O的切线,交边BC于一点D.
(Ⅰ)求证:OD∥AC;
(Ⅱ)若OD交圆O于一点M,且∠A=60°,求$\frac{OM}{OD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(Ⅰ)命题“?x∈R,x2-3ax+9>0”为真命题,求实数a的取值范围;
(Ⅱ)若“x2+2x-8<0”是“x-m>0”的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点O,A,B不在同一条直线上,点P为该平面上一点,且$\overrightarrow{OP}=2\overrightarrow{OA}-\overrightarrow{OB}$,则(  )
A.点P在线段AB上B.点P在线段AB的反向延长线上
C.点P在线段AB的延长线上D.点P不在直线AB上

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$y={log_{\frac{1}{2}}}({-x^2}+2x+3)$的单调递减区间是(-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\frac{1}{{\sqrt{x-2}}}-\sqrt{x-5}$,则函数的定义域为[5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在下列条件中,可判定平面α与平面β平行的是(  )
A.α,β都平行于直线a
B.α内有三个不共线的点到β的距离相等
C.l,m是α内的两条直线,且l∥β,m∥β
D.l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=asinx+bcosx(a>0),且当f($\frac{π}{4}$)=$\sqrt{2}$时f(x)的最大值为$\sqrt{10}$.
(1)求a,b的值.
(2)若f(x)=1且x≠kπ,(k∈Z)求sin2x的值.

查看答案和解析>>

同步练习册答案