精英家教网 > 高中数学 > 题目详情
5.已知f(x)=asinx+bcosx(a>0),且当f($\frac{π}{4}$)=$\sqrt{2}$时f(x)的最大值为$\sqrt{10}$.
(1)求a,b的值.
(2)若f(x)=1且x≠kπ,(k∈Z)求sin2x的值.

分析 (1)依题意,可列出关于a、b的方程组$\left\{\begin{array}{l}{a+b=2}\\{{a}^{2}{+b}^{2}=10}\end{array}\right.$,解之即可;
(2)由f(x)=1且x≠kπ(k∈Z)可求得cosx=$\frac{4}{5}$,sinx=$\frac{3}{5}$,从而可求sin2x的值.

解答 解:(1)由已知可得,a+b=2,a2+b2=10(a>0),
解得a=3,b=-1.
(2)由f(x)=1得,3sinx-cosx=1,
∴3sinx=cosx+1,
平方得,9sin2x=cos2x+2cosx+1,
∴5cos2x+cosx-4=0,
∴cosx=$\frac{4}{5}$(-1舍去),从而sinx=$\frac{3}{5}$,
∴sin2x=2sinxcosx=2×$\frac{4}{5}$×$\frac{3}{5}$=$\frac{24}{25}$.

点评 本题考查三角函数中的恒等变换应用,突出考查函数与方程思想及运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{OP}$=(2cos($\frac{π}{2}$+x),1),$\overrightarrow{OQ}$=(sin($\frac{3π}{2}$-x),cos2x),定义函数f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$
(1)求函数f(x)的表达式,并指出其最值;
(2)已知$f(\frac{x}{2})=\frac{1}{5},x∈(-\frac{π}{2},0),求f(-\frac{x}{2})$.
(3)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.-330°化成弧度制是(  )
A.$-\frac{4}{3}π$B.$-\frac{5}{3}π$C.$-\frac{7}{6}π$D.$-\frac{11}{6}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.将各项均为正数的数列{an}排成如图所示的三角形数阵(第n行有n个数,同一行中,下标小的数排在左边),bn表示数阵中,第n行、第1列的数.已知数列{bn}为等比数列,且从第3行开始,各行均构成公差为d的等差数列(第3行的3个数构成公差为d的等差数列;第4行的4个数构成公差为d的等差数列,…),a1=1,a12=17,a18=34.
(1)求数阵中第m行、第n列的数A(m,n)(用m,n表示);
(2)求a2014的值;
(3)2014是否在该数阵中?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的前n和为Sn,若a1=-13,a5+a7=-6,则当Sn取最小值时,n等于(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):
高校相关人数抽取人数
A18x
B362
C54y
(1)求表中的x和y;
(2)若从高校B,C抽取的人中选2人进行专题发言,求这2人来自不同高校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,已知点A(-1,1)、B(1,1),P是动点,且直线AP与B 的斜率之积等于-$\frac{1}{3}$.
(1)求动点P的轨迹方程;
(2)设直线AP与BP分别与直线x=3相交于点M、N,试问:是否存在点P使得△PAB 与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知平面α∥平面β,点A,B∈α,点C,D∈β,且AC∥BD,求证:AC=BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在直角坐标系xOy中,圆锥曲线C的参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(θ为参数),直线l经过定点P(1,1),倾斜角为$\frac{π}{3}$.
(Ⅰ)写出直线l的参数方程和圆锥曲线C的标准方程;
(Ⅱ)设直线l与圆锥曲线C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案