| A. | α,β都平行于直线a | |
| B. | α内有三个不共线的点到β的距离相等 | |
| C. | l,m是α内的两条直线,且l∥β,m∥β | |
| D. | l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β |
分析 A、B、C列举反例:当α∩β=l,l∥a,不能推出α∥β;当α∩β=a,且在α内同侧有两点,另一侧一个点,三点到β的距离相等;当l与m平行;先判断α内存在两条相交直线与平面β平行,再根据面面平行的判定,即可得到结论.
解答 解:对于A,当α∩β=l,l∥a时,不能推出α∥β;
对于B,当α∩β=a,且在α内同侧有两点,另一侧一个点,三点到β的距离相等时,不能推出α∥β;
对于C,当l与m平行时,不能推出α∥β;
对于D,∵l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,∴α内存在两条相交直线与平面β平行,根据面面平行的判定,可得α∥β,
故选D.
点评 本题考查面面平行的判定,解题时,不正确的结论列举反例,正确的结论要给出充分的理由.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{4}{3}π$ | B. | $-\frac{5}{3}π$ | C. | $-\frac{7}{6}π$ | D. | $-\frac{11}{6}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com