精英家教网 > 高中数学 > 题目详情
3.(Ⅰ)命题“?x∈R,x2-3ax+9>0”为真命题,求实数a的取值范围;
(Ⅱ)若“x2+2x-8<0”是“x-m>0”的充分不必要条件,求实数m的取值范围.

分析 (Ⅰ)根据二次函数的性质得到关于a的不等式,解出即可;(Ⅱ)解不等式,结合集合的包含关系,判断即可.

解答 解:(Ⅰ)依题意得:△=9a2-36<0,
解得-2≤a≤2;
(Ⅱ)由x2+2x-8<0,得-4<x<2,
由x-m>0,得x>m,
∵“x2+2x-8<0”是“x-m>0”的充分不必要条件,
∴(-4,2)?(m,+∞),
∴m≤-4.

点评 本题考查了二次函数的性质,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设有限集合A={a1,a2,..,an},则a1+a2+…+an叫做集合A的和,记作SA,若集合P={x|x=2n-1,n∈N*,n≤4},集合P的含有3个元素的全体子集分别记为P1,P2,…,Pk,则P1+P2+…+Pk=48.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x∈N|1≤x≤10},B是A的子集,且B中各元素的和为8,则满足条件的集合B共有(  )
A.8个B.7个C.6个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$sinθ+cosθ=\frac{1}{2}$,其中θ在第二象限,则cosθ-sinθ=(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{{\sqrt{7}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+5≤0\\ x+y≥0\\ y≤3\end{array}$,则z=4x+2y的最小值是(  )
A.-8B.-6C.-5D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(cosα,sinα),且$\overrightarrow a$⊥$\overrightarrow b$,则tan(α-$\frac{π}{4}$)等于(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{OP}$=(2cos($\frac{π}{2}$+x),1),$\overrightarrow{OQ}$=(sin($\frac{3π}{2}$-x),cos2x),定义函数f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$
(1)求函数f(x)的表达式,并指出其最值;
(2)已知$f(\frac{x}{2})=\frac{1}{5},x∈(-\frac{π}{2},0),求f(-\frac{x}{2})$.
(3)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)过点P(3,2),且在x轴上的截距等于y轴上的截距2倍的直线方程;
(2)若一直线被直线4x+y+6=0和3x-5y-6=0截得的线段的中点恰好在坐标原点,求这条直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.将各项均为正数的数列{an}排成如图所示的三角形数阵(第n行有n个数,同一行中,下标小的数排在左边),bn表示数阵中,第n行、第1列的数.已知数列{bn}为等比数列,且从第3行开始,各行均构成公差为d的等差数列(第3行的3个数构成公差为d的等差数列;第4行的4个数构成公差为d的等差数列,…),a1=1,a12=17,a18=34.
(1)求数阵中第m行、第n列的数A(m,n)(用m,n表示);
(2)求a2014的值;
(3)2014是否在该数阵中?并说明理由.

查看答案和解析>>

同步练习册答案