精英家教网 > 高中数学 > 题目详情
8.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(cosα,sinα),且$\overrightarrow a$⊥$\overrightarrow b$,则tan(α-$\frac{π}{4}$)等于(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

分析 由$\overrightarrow{a}⊥\overrightarrow{b}$便可得到$\overrightarrow{a}•\overrightarrow{b}=0$,从而求出tanα=-2,这样根据两角差的正切公式即可求出$tan(α-\frac{π}{4})$的值.

解答 解:$\overrightarrow{a}⊥\overrightarrow{b}$;
∴$\overrightarrow{a}•\overrightarrow{b}=2cosα+sinα=0$;
∴sinα=-2cosα;
∴tanα=-2;
∴$tan(α-\frac{π}{4})=\frac{tanα-tan\frac{π}{4}}{1+tanαtan\frac{π}{4}}$=$\frac{-2-1}{1-2×1}=3$.
故选A.

点评 考查向量垂直的充要条件,弦化切公式,以及两角差的正切公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若(a+b+c)(b+c-a)=3ab,且sinA=2sinBcosC,那么△ABC是(  )
A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某同学从物理、化学、生物、政治、历史、地理六科中选择三个学科参加测试,则物理和化学不同时被选中的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数),直线l经过定点P(1$,\sqrt{2}$),倾斜角为$\frac{π}{3}$.
(1)写出直线l的参数方程和圆的标准方程;
(2)设直线l与圆相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(Ⅰ)命题“?x∈R,x2-3ax+9>0”为真命题,求实数a的取值范围;
(Ⅱ)若“x2+2x-8<0”是“x-m>0”的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若0≤θ≤2π,则使tanθ≥1成立的角θ的取值范围是[$\frac{π}{4}$,$\frac{π}{2}$)∪[$\frac{5π}{4}$,$\frac{3π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$y={log_{\frac{1}{2}}}({-x^2}+2x+3)$的单调递减区间是(-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知动点M的坐标满足10$\sqrt{{x^2}+{y^2}}=|{3x+4y-12}$|,则动点M的轨迹是(  )
A.椭圆B.双曲线C.D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}前n项和为Sn,首项为a1,且1,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+2),求证:$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$<$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案