精英家教网 > 高中数学 > 题目详情
18.已知数列{an}前n项和为Sn,首项为a1,且1,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+2),求证:$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$<$\frac{1}{4}$.

分析 (1)由1,an,Sn成等差数列,可得2an=Sn+1,利用递推关系与等比数列的通项公式即可得出.
(2)利用对数的运算性质可得bn=4n(n+1),$\frac{1}{bn}$=$\frac{1}{4}({\frac{1}{n}×\frac{1}{n+1}})=\frac{1}{4}({\frac{1}{n}-\frac{1}{n+1}})$,再利用“裂项求和方法”即可得出.

解答 (1)解:∵1,an,Sn成等差数列,∴2an=Sn+1,
当n=1时,2a1=S1+1,∴a1=1,
当n≥2时,Sn=2an-1,Sn-1=2an-1-1,
两式相减得an=Sn-Sn-1=2an-2an-1
∴$\frac{{a}_{n}}{{a}_{n-1}}$=2,
∴数列{an}是首项为1,公比为2的等比数列,
∴an=1×2n-1=2n-1
(2)证明:bn=(log2a2n+1)×(log2a2n+3)=log222n+1-1×log222n+3-1=4n(n+1),
$\frac{1}{bn}$=$\frac{1}{4}({\frac{1}{n}×\frac{1}{n+1}})=\frac{1}{4}({\frac{1}{n}-\frac{1}{n+1}})$,
$\begin{array}{l}\frac{1}{b_1}+\frac{1}{b_2}+\frac{1}{b_3}+…+\frac{1}{b_n}=\frac{1}{4}[{({\frac{1}{1}-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+…({\frac{1}{n}-\frac{1}{n+1}})}]\\=\frac{1}{4}({1-\frac{1}{n+1}})<\frac{1}{4}(n∈{N^*})\end{array}$
即$\frac{1}{b1}$+$\frac{1}{b2}$+$\frac{1}{b3}$+…+$\frac{1}{bn}$<$\frac{1}{4}$.

点评 本题考查了数列递推关系与等比数列的通项公式、对数的运算性质、裂项求和方法”、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(cosα,sinα),且$\overrightarrow a$⊥$\overrightarrow b$,则tan(α-$\frac{π}{4}$)等于(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果一个水平放置的图形的斜二测直观图是一个底角为60°,腰和上底均为1的等腰梯形,那么原平面图形的面积是$\frac{{3\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=3sin({2x+\frac{π}{6}})$
(1)用“五点法”画出函数在长度为一个周期的闭区间上的简图;
(2)完整叙述函数$f(x)=3sin({2x+\frac{π}{6}})$的图象可由正弦曲线经过怎样的变化得到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.将各项均为正数的数列{an}排成如图所示的三角形数阵(第n行有n个数,同一行中,下标小的数排在左边),bn表示数阵中,第n行、第1列的数.已知数列{bn}为等比数列,且从第3行开始,各行均构成公差为d的等差数列(第3行的3个数构成公差为d的等差数列;第4行的4个数构成公差为d的等差数列,…),a1=1,a12=17,a18=34.
(1)求数阵中第m行、第n列的数A(m,n)(用m,n表示);
(2)求a2014的值;
(3)2014是否在该数阵中?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.$\int_{0}^{3}{|{x^2}-1|}dx$=$\frac{22}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):
高校相关人数抽取人数
A18x
B362
C54y
(1)求表中的x和y;
(2)若从高校B,C抽取的人中选2人进行专题发言,求这2人来自不同高校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆C的极坐标方程为:ρ=2sinθ,则其圆心C的直角坐标是(  )
A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lg(a-ax-x2).
(Ⅰ)若函数f(x)存在,求a的取值范围.
(Ⅱ) 若f(x)在x∈(2,3)上有意义,求a的取值范围.
(Ⅲ)若f(x)>0的解集为(2,3),求a的值.

查看答案和解析>>

同步练习册答案