精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=3sin({2x+\frac{π}{6}})$
(1)用“五点法”画出函数在长度为一个周期的闭区间上的简图;
(2)完整叙述函数$f(x)=3sin({2x+\frac{π}{6}})$的图象可由正弦曲线经过怎样的变化得到?

分析 (1)根据“五点法”即可画出函数在长度为一个周期的闭区间上的简图;
(2)根据三角函数图象之间的关系,即可得到结论.

解答 解:(1)“五点法列表”.
①列表;
②在坐标系中描出以上五点;
③用光滑的曲线连接这五点,得所要求作的函数图象.

$2x+\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$
x$-\frac{π}{12}$$\frac{π}{6}$$\frac{5π}{12}$$\frac{2π}{3}$$\frac{11π}{12}$
$sin({2x+\frac{π}{6}})$010-10
$3sin({2x+\frac{π}{6}})$030-30

(2)y=sinx的图象先向左水平平移$\frac{π}{6}$个单位得到$y=sin({x+\frac{π}{6}})$的图象,再将横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变)得到$y=sin({2x+\frac{π}{6}})$的图象,最后将纵坐标扩大为原来的3倍(横坐标不变),则得到函数$f(x)=3sin({2x+\frac{π}{6}})$的图象.

点评 本题主要考查三角函数的图象和性质,要求熟练掌握五点法作图以及函数图象之间的变化关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数),直线l经过定点P(1$,\sqrt{2}$),倾斜角为$\frac{π}{3}$.
(1)写出直线l的参数方程和圆的标准方程;
(2)设直线l与圆相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知动点M的坐标满足10$\sqrt{{x^2}+{y^2}}=|{3x+4y-12}$|,则动点M的轨迹是(  )
A.椭圆B.双曲线C.D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=$\sqrt{6}$.
(Ⅰ)求证:AO⊥平面BCD;
(Ⅱ) 求O点到平面ACD的距离;
(Ⅲ) 求二面角A-BC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=sinxcosx+\sqrt{3}{cos^2}x-\frac{{\sqrt{3}}}{2}$.
(1)求f(x)的最小正周期和对称轴;
(2)将函数f(x)的图象向右平移$\frac{π}{4}$个单位后,再将得到的图象上各点的横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=e2x-alnx.
(1)讨论f(x)的导函数f′(x)零点的个数;
(2)证明:当a>0时,$f(x)≥2a+aln\frac{2}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}前n项和为Sn,首项为a1,且1,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+2),求证:$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若集合M={x||x|<1},N={x|y=(4x2-3x)-0.5},则M∩N=$(-1,0)∪(\frac{3}{4},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设角θ的终边经过点(3,-4),则cos(θ+$\frac{π}{4}$)的值等于$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

同步练习册答案