分析 (I)利用导数的运算法则可得f′(x),对a分类讨论即可得出.
(Ⅱ)由(Ⅰ)知,可设导函数f′(x)在(0,+∞)上的唯一零点为x0,利用导数研究其单调性极值最值即可证明.
解答 (Ⅰ)解:f(x)=e2x-alnx的定义域为(0,+∞),
∴f′(x)=2e2x-$\frac{a}{x}$.
当a≤0时,f′(x)>0恒成立,故f′(x)没有零点,
当a>0时,∵y=e2x为单调递增,y=-$\frac{a}{x}$单调递增,
∴f′(x)在(0,+∞)单调递增,
又f′(a)>0,
假设存在b满足0<b<$\frac{a}{4}$时,且b<$\frac{1}{4}$,f′(b)<0,
故当a>0时,导函数f′(x)存在唯一的零点,
(Ⅱ)证明:由(Ⅰ)知,可设导函数f′(x)在(0,+∞)上的唯一零点为x0,
当x∈(0,x0)时,f′(x)<0,
当x∈(x0+∞)时,f′(x)>0,
故f(x)在(0,x0)单调递减,在(x0+∞)单调递增,
∴当x=x0时,f(x)取得最小值,最小值为f(x0),
由于2e${\;}^{2{x}_{0}}$-$\frac{a}{{x}_{0}}$=0,
∴f(x0)=$\frac{a}{2{x}_{0}}$+2ax0+aln$\frac{2}{a}$≥2a+aln$\frac{2}{a}$.
点评 本题考查了利用导数研究函数的单调性极值与最值,考查了分类讨论方法、推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
| 数N | 1.010 | 1.015 | 1.017 | 1.310 | 2.000 |
| 对数lgN | 0.004 3 | 0.006 5 | 0.007 3 | 0.117 3 | 0.301 0 |
| 数N | 3.000 | 5.000 | 12.48 | 13.11 | 13.78 |
| 对数lgN | 0.477 1 | 0.699 0 | 1.096 2 | 1.117 6 | 1.139 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com