分析 根据两个直角三角形的两个锐角,再表示出两个方程的根,得到锐角α,β的余弦值,进而得到k的值,设直角三角形的两个锐角α、β所对的边为a,b,斜边为c,进而可求b=$\frac{1}{2}$c,a=$\frac{\sqrt{3}}{2}$c,代入三角形面积公式即可计算得解斜边的长.
解答
解:设直角三角形的两个锐角分别为α、β,则可得α+β=$\frac{π}{2}$,
∴cosα=sinβ,
∵方程4x2-2(k+1)x+k=0,即(2x-1)(2x-k)=0的两根为x=$\frac{1}{2}$或x=$\frac{k}{2}$,
∴cosα=$\frac{1}{2}$,
∴α=60°且β=30°,
∴cosβ=cos30°=$\frac{k}{2}$,
∴k=$\sqrt{3}$,
设直角三角形的两个锐角α、β所对的边为a,b,斜边为c,
∴由cosα=$\frac{1}{2}$=$\frac{b}{c}$,可得:b=$\frac{1}{2}$c,由cosβ=cos30°=$\frac{a}{c}$,可得:a=$\frac{\sqrt{3}}{2}$c,
∵直角三角形面积为4$\sqrt{3}$=$\frac{1}{2}$ab=$\frac{1}{2}×$$\frac{c}{2}$×$\frac{\sqrt{3}c}{2}$,
∴解得:c=4$\sqrt{2}$.
点评 本题考查一元二次方程根与系数之间的关系即同角的三角函数之间的关系,本题解题的关键是利用两个锐角互余的关系来解题,本题是一个中档题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$ | B. | 2$\sqrt{6}$ | C. | 3 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5\sqrt{30}}{6}$ | B. | $\frac{5\sqrt{30}}{4}$ | C. | $\frac{5\sqrt{30}}{2}$ | D. | $\frac{5\sqrt{15}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{13}}}{13}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{{\sqrt{7}}}{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com