精英家教网 > 高中数学 > 题目详情
13.某几何体的三视图如图所示,当xy最大时,该几何体的体积为(  )
A.$\frac{5\sqrt{30}}{6}$B.$\frac{5\sqrt{30}}{4}$C.$\frac{5\sqrt{30}}{2}$D.$\frac{5\sqrt{15}}{6}$

分析 三视图复原几何体是长方体的一个角,利用勾股定理,基本不等式,确定xy最大时AD的值,代入棱锥的体积公式计算可得.

解答 解:由三视图得几何体为三棱锥,其直观图如图
∴AD⊥BD,AD⊥CD,∴x2-5=25-y2,∴x2+y2=30,
∵2xy≤x2+y2=30,∴xy≤15,当x=y=$\sqrt{15}$时,取“=”,
此时,AD=$\sqrt{10}$,几何体的体积V=$\frac{1}{3}×\sqrt{10}×\frac{1}{2}×\sqrt{5}×\sqrt{15}=\frac{5\sqrt{30}}{6}$.
故选A.

点评 本题考查三视图求体积,考查基本不等式求最值,利用基本不等式求xy最大时AD的值,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+1(x≥0)\\-2x(x<0)\end{array}\right.$,求方程f(x)=10的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知方程4x2-2(k+1)x+k=0的两根恰好是一个直角三角形的两个锐角的余弦,若直角三角形面积为4$\sqrt{3}$,求k的值和直角三角形斜边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\frac{1}{x}$,则$\underset{lim}{△x→∞}$$\frac{f(2+△x)-f(2)}{△x}$的值是(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.2D.ln2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)=2sin(ωx+φ)-m,恒有f(x+$\frac{π}{2}$)=f(-x)成立,且f($\frac{π}{4}$)=-1,则实数m的值为(  )
A.±1B.±3C.-3或1D.-1或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知(x,y)在映射f下的像是(x+y,x-y),则像(4,1)在映射f下的原象为(2.5,1.5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,则f[f(-2)]=2;使f(a)<0的a的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题甲是“{x|$\frac{{{x^2}+x}}{x-1}$≥0}”,命题乙是“{x|log3(2x+1)≤0}”,则(  )
A.甲是乙的充分条件,但不是乙的必要条件
B.甲是乙的必要条件,但不是乙的充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件,也不是乙的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知指数函数y=ax在[0,1]上的最大值与最小值的差为$\frac{1}{2}$,则实数a的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{1}{2}$或$\frac{3}{2}$D.4

查看答案和解析>>

同步练习册答案