精英家教网 > 高中数学 > 题目详情
2.已知命题甲是“{x|$\frac{{{x^2}+x}}{x-1}$≥0}”,命题乙是“{x|log3(2x+1)≤0}”,则(  )
A.甲是乙的充分条件,但不是乙的必要条件
B.甲是乙的必要条件,但不是乙的充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件,也不是乙的必要条件

分析 分别化简解出甲乙的不等式,即可判断出结论.

解答 解:$\frac{{{x^2}+x}}{x-1}$≥0,?x(x+1)(x-1)≥0,且x≠1,解得:-1≤x≤0,或x>1.
由log3(2x+1)≤0,∴0<2x+1≤1,解得:$-\frac{1}{2}<x≤0$.
∴甲是乙的必要条件,但不是乙的充分条件.
故选:B.

点评 本题考查了不等式的解法、对数函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如果扇形圆心角的弧度数为2,圆心角所对的弦长也为2,那么这个扇形的面积是$\frac{1}{si{n}^{2}1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某几何体的三视图如图所示,当xy最大时,该几何体的体积为(  )
A.$\frac{5\sqrt{30}}{6}$B.$\frac{5\sqrt{30}}{4}$C.$\frac{5\sqrt{30}}{2}$D.$\frac{5\sqrt{15}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an},{bn}满足a1=1,b1=2,an+1=$\sqrt{{a_n}{b_n}}$,bn+1=$\frac{{{a_n}+{b_n}}}{2}$,
(1)求证:当n≥2时,an-1≤an≤bn≤bn-1
(2)设Sn为数列{|an-bn|}的前n项和,求证:Sn<$\frac{10}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等比数列{an}满足a1=3,a1+a3+a5=21,则a2a6=(  )
A.6B.9C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,角A、B、C的对边分别为a,b,c,若2csinA=atanC,cosB=$\frac{{\sqrt{3}}}{2}$,则角A的大小是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平面直角坐标系中,双曲线$\frac{x^2}{12}$-$\frac{y^2}{4}$=1的右焦点为F,一条过原点O且倾斜角为锐角的直线l与双曲线C交于A,B两点,若△FAB的面积为8$\sqrt{3}$,则直线l的斜率为(  )
A.$\frac{{2\sqrt{13}}}{13}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{{\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\sqrt{a{x^2}+2ax+1}$的定义域为R,则实数a的取值范围为(  )
A.(0,1)B.[0,1]C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,已知点A(a,a),B(2,3),C(3,2).
(1)若向量$\overrightarrow{AB}$,$\overrightarrow{AC}$的夹角为钝角,求实数a的取值范围;
(2)若a=1,点P(x,y)在△ABC三边围成的区域(含边界)上,$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),求m-n的最大值.

查看答案和解析>>

同步练习册答案