精英家教网 > 高中数学 > 题目详情
16.已知x≥1,则函数y=f(x)=$\frac{{4{x^2}-2x+16}}{2x-1}$的最小值为9,此时对应的x值为$\frac{5}{2}$.

分析 令2x-1=t≥1,则x=$\frac{1+t}{2}$.代入可得函数y=f(x)=$\frac{4×\frac{(1+t)^{2}}{4}-2×\frac{1+t}{2}+16}{t}$=t+$\frac{16}{t}$+1,再利用基本不等式的性质即可得出.

解答 解:令2x-1=t≥1,则x=$\frac{1+t}{2}$.
∴函数y=f(x)=$\frac{{4{x^2}-2x+16}}{2x-1}$=$\frac{4×\frac{(1+t)^{2}}{4}-2×\frac{1+t}{2}+16}{t}$=t+$\frac{16}{t}$+1≥2$\sqrt{t•\frac{16}{t}}$+1=9,当且仅当t=4,即x=$\frac{5}{2}$时取等号.
故答案为:9,$\frac{5}{2}$.

点评 本题考查了函数的单调性、基本不等式的性质、“换元法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在边长为1的正方形ABCD中,E,F分别是边BC,DC上的点,且$\overrightarrow{BE}=\frac{1}{4}\overrightarrow{BC}$,$\overrightarrow{DF}=-\overrightarrow{CF}$,则$\overrightarrow{AE}•\overrightarrow{AF}$=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设向量$\overrightarrow a$=(2,sinθ),$\overrightarrow b$=(1,cosθ),θ为锐角.
(1 )若$\overrightarrow a$•$\overrightarrow b$=$\frac{13}{6}$,求sinθ+cosθ的值;
(2 )若$\overrightarrow a$∥$\overrightarrow b$,求tan(θ-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知方程4x2-2(k+1)x+k=0的两根恰好是一个直角三角形的两个锐角的余弦,若直角三角形面积为4$\sqrt{3}$,求k的值和直角三角形斜边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,直角△ACD中,AD=2AC,AB是斜边上的高,BE⊥AC,BF⊥AD,沿AB将△ACD折成棱锥A-BCD(图2),且CD⊥BC.

(Ⅰ) DC⊥BE;
(Ⅱ) 求BF与平面ACD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\frac{1}{x}$,则$\underset{lim}{△x→∞}$$\frac{f(2+△x)-f(2)}{△x}$的值是(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.2D.ln2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)=2sin(ωx+φ)-m,恒有f(x+$\frac{π}{2}$)=f(-x)成立,且f($\frac{π}{4}$)=-1,则实数m的值为(  )
A.±1B.±3C.-3或1D.-1或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,则f[f(-2)]=2;使f(a)<0的a的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1上有一点M(-4,$\frac{9}{5}$)在抛物线y2=2px(p>0)的准线l上,抛物线的焦点也是椭圆焦点.
(1)求椭圆的标准方程;
(2)若点N在抛物线上,过N作准线l的垂线,垂足为Q,求|MN|+|NQ|的最小值.

查看答案和解析>>

同步练习册答案