精英家教网 > 高中数学 > 题目详情
19.已知抛物线y2=8x,离心率为2的双曲线$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1与它有公共焦点F,若P是两曲线的一个公共点,则△OPF(O为坐标原点)的面积为(  )
A.$\sqrt{6}$B.2$\sqrt{6}$C.3D.6

分析 求得抛物线的焦点F,可得m+n=4,再由离心率公式可得m=1,n=3,联立双曲线的方程和抛物线的方程,求得交点P,再由三角形的面积公式,计算即可得到所求值.

解答 解:抛物线y2=8x的焦点F(2,0),
离心率为2的双曲线$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1,可得
m+n=4,$\frac{m+n}{m}$=4,
解得m=1,n=3,
双曲线的方程为x2-$\frac{{y}^{2}}{3}$=1.
联立$\left\{\begin{array}{l}{{y}^{2}=8x}\\{3{x}^{2}-{y}^{2}=3}\end{array}\right.$,解得交点P(3,±2$\sqrt{6}$),
则△OPF(O为坐标原点)的面积为
$\frac{1}{2}$|OF|•|yP|=$\frac{1}{2}$×2×2$\sqrt{6}$=2$\sqrt{6}$.
故选:B.

点评 本题考查双曲线的方程和性质,考查抛物线的焦点坐标,以及三角形的面积的求法,运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的前n和为Sn,若${S_n}={n^2}-2n$,则a4+a5=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若∠F1PQ=45°,|PQ|=$\sqrt{2}|P{F_1}|$,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$-1D.2-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设向量$\overrightarrow a$=(2,sinθ),$\overrightarrow b$=(1,cosθ),θ为锐角.
(1 )若$\overrightarrow a$•$\overrightarrow b$=$\frac{13}{6}$,求sinθ+cosθ的值;
(2 )若$\overrightarrow a$∥$\overrightarrow b$,求tan(θ-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}满足:a1=$\frac{1}{2}$,a1,a2,a3-$\frac{1}{8}$成等差数列,公比q∈(0,1)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知方程4x2-2(k+1)x+k=0的两根恰好是一个直角三角形的两个锐角的余弦,若直角三角形面积为4$\sqrt{3}$,求k的值和直角三角形斜边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,直角△ACD中,AD=2AC,AB是斜边上的高,BE⊥AC,BF⊥AD,沿AB将△ACD折成棱锥A-BCD(图2),且CD⊥BC.

(Ⅰ) DC⊥BE;
(Ⅱ) 求BF与平面ACD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)=2sin(ωx+φ)-m,恒有f(x+$\frac{π}{2}$)=f(-x)成立,且f($\frac{π}{4}$)=-1,则实数m的值为(  )
A.±1B.±3C.-3或1D.-1或3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线mx+2ny-4=0始终平分圆x2+y2-4x+2y-4=0的周长,则m、n的关系是(  )
A.m-n-2=0B.m+n-2=0C.m+n-4=0D.m-n+4=0

查看答案和解析>>

同步练习册答案