精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象经过点()和(),完成下面问题:

1)求函数的表达式;

2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质;

3)已知函数的图象如图所示,结合你所画出的图象,直接写出的解集.

【答案】1;(2)图象见解析,当时,增大而增大;当时,增大而减少;(3

【解析】

1)在函数中,把点()和()代入,可以求得该函数的表达式;

2)根据(1)中的表达式可以画出该函数的图象,根据函数图象增减性得出结论;

3)根据图象可以直接写出所求不等式的解集.

1)根据题意,得

解方程组,得

所求函数表达式为

2)列表如下:

x

0

1

4

1

描点并连线,函数的图象如图所示,

由图象可知,性质为:当时,增大而增大;当时,增大而减少.

3)由图象可知:的解集是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋中有红、白球各一个,每次任取一个,有放回地摸三次,求基本事件的个数n,写出所有基本事件的全集I,并计算下列事件的概率:

1)三次颜色恰有两次同色;

2)三次颜色全相同;

3)三次摸到的红球多于白球.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一张坐标纸上一已作出圆及点折叠此纸片使与圆周上某点重合每次折叠都会留下折痕设折痕与直线的交点为令点的轨迹为.

(1)求轨迹的方程

(2)若直线与轨迹交于两个不同的点且直线与以为直径的圆相切的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班数学兴趣小组对函数的图象和性质将进行了探究,探究过程如下,请补充完整.

1)自变量的取值范围是除外的全体实数,的几组对应值列表如下:

其中,_________

2)根据上表数据,在如图所示的平面直角坐标系中描点并画出了函数图象的一部分,请画出该函数图象的另一部分;

3)观察函数图象,写出一条函数性质;

4)进一步探究函数图象发现:

①函数图象与轴交点情况是________,所以对应方程的实数根的情况是________

②方程_______个实数根;

③关于的方程个实数根,的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在学习函数时,我们经历了“确定函数的表达式利用函数图象研究其性质——运用函数解决问题“的学习过程,在画函数图象时,我们通过列表、描点、连线的方法画出了所学的函数图象.同时,我们也学习过绝对值的意义

结合上面经历的学习过程,现在来解决下面的问题:

在函数中,当时,;当时,

1)求这个函数的表达式;

2)在给出的平面直角坐标系中,请直接画出此函数的图象并写出这个函数的两条性质;

3)在图中作出函数的图象,结合你所画的函数图象,直接写出不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=loga)(0<a<1,b>0)为奇函数,当x∈(﹣1,a]时,函数y=fx)的值域是(﹣∞,1].

(1)确定b的值;

(2)证明函数y=fx)在定义域上单调递增,并求a的值;

(3)若对于任意的t∈R,不等式ft2﹣2t)+f(2t2k)>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人投篮命中的概率分别为,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.

(1)求比赛结束后甲的进球数比乙的进球数多1的概率;

(2)设表示比赛结束后甲、乙两人进球数的差的绝对值,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数.

试问:(1)能组成多少个不同的五位偶数?

(2)五位数中,两个偶数排在一起的有几个?

(3)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示)

查看答案和解析>>

同步练习册答案