精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2-4x+c.若f(x)<0的解集是(-1,5)
(1)求实数a,c的值;
(2)求函数f(x)在x∈[0,3]上的值域.
分析:(1)由不等式f(x)<0的解集是(-1,5),可知二次不等式对应的方程的根,利用根与系数关系列式求a和c的值;
(2)求出函数f(x)的解析式后,借助于其图象分析函数在[0,3]上的单调性,运用单调性求函数f(x)在x∈[0,3]上的值域.
解答:解:(1)由f(x)<0,得:ax2-4x+c<0,
不等式ax2-4x+c<0的解集是(-1,5),
故方程ax2-4x+c=0的两根是x1=-1,x2=5.
所以
4
a
=x1+x2=4,
c
a
=x1x2=-5

所以a=1,c=-5.
(2)由(1)知,f(x)=x2-4x-5=(x-2)2-9.
∵x∈[0,3],f(x)在[0,2]上为减函数,在[2,3]上为增函数.
∴当x=2时,f(x)取得最小值为f(2)=-9.
而当x=0时,f(0)=(0-2)2-9=-5,当x=3时,f(3)=(3-2)2-9=-8
∴f(x)在[0,3]上取得最大值为f(0)=-5.
∴函数f(x)在x∈[0,3]上的值域为[-9,-5].
点评:本题考查了一元二次不等式的解集与二次不等式对应的方程的根的关系,考查了利用函数的单调性求函数的值域,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案