精英家教网 > 高中数学 > 题目详情
14.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.4,敌机被击中的概率为0.76.

分析 先求出敌机没有被击中的概率为 (1-0.6)(1-0.4),用1减去此概率,即得敌机被击中的概率.

解答 解:敌机没有被击中的概率为 (1-0.6)(1-0.4)=0.24,
故敌机被击中的概率为 1-0.24=0.76,
故答案为 0.76.

点评 本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设a=$\sqrt{3}$+2$\sqrt{2}$,b=2+$\sqrt{7}$,则a、b的大小关系为?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对两个变量的相关系数r,下列说法中正确的是(  )
A.|r|趋近于0时,没有非线性相关关系B.|r|越接近于1时,线性相关程度越强
C.|r|越大,相关程度越大D.|r|越小,相关程度越大

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x-sinx,若不等式f(-4t)>f(2m+mt2)对任意实数t恒成立,则实数m的取值范围是(  )
A.(-∞,-$\sqrt{2}$)B.(-$\sqrt{2}$,0)C.(-∞,0)∪($\sqrt{2}$,+∞)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设A={1,3,a},B={1,a2},问是否存在这样的实数a,使得A∪B={1,a,3},A∩B={1,a}同时成立?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平行四边形ABCD中,O是对角线的交点,下列结论正确的是(  )
A.$\overrightarrow{AB}$=$\overrightarrow{CD}$,$\overrightarrow{BC}$=$\overrightarrow{AD}$B.$\overrightarrow{AD}$+$\overrightarrow{OD}$=$\overrightarrow{OA}$C.$\overrightarrow{AO}$+$\overrightarrow{OD}$=$\overrightarrow{AC}$+$\overrightarrow{CD}$D.$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$=$\overrightarrow{DA}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,正视图与侧视图完全相同,则该几何体的体积为(  )
A.$\frac{192-8π}{3}$B.$16+16\sqrt{5}+4(\sqrt{2}-1)π$C.$\frac{56π}{3}$D.$\frac{64-8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=3sin3x($\frac{π}{6}$≤x≤$\frac{5π}{6}$)与函数y=3的图象围成一个封闭图形,这个封闭图形的面积是(  )
A.B.2C.D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x3-$\frac{9}{2}$x2+6x-3.
(1)求f(x)的单调区间和极值点;
(2)求f(x)在[0,3]的最大值与最小值;
(3)画y=f(x)的草图.

查看答案和解析>>

同步练习册答案