精英家教网 > 高中数学 > 题目详情

给出下列函数①;②;③;④;⑤

其中满足条件f >  的函数的个数是(    )

A.1个       B.2个        C.3个         D.4个

 

【答案】

B

【解析】

试题分析:根据指数函数图像可知①不是凸函数,是凹函数,②,也是凹函数,不满足条件,③;也是凹函数,④;作图可知道是凸函数,成立。

是定义域内的凸函数,符合题意,故正确的个数为2,选B.

考点:本试题主要考查了凸函数的概念的理解和运用。

点评:解决该试题的关键是理解满足条件的函数必须要满足任意两点的中点的函数值都高于端点函数值和的一半。即为凸函数。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•济南三模)如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:
①f(x)=sinxcosx;②f(x)=2sin(x+
π
4
);③f(x)=sinx+
3
cosx;  ④f(x)=
2
sin2x+1.
其中“同簇函数”的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,若存在常数m>0,使|f(x)|≤m|x|对一切实数x均成立,则称f(x)为F函数.给出下列函数:
①f(x)=0;②f(x)=x2;③f(x)=
2
(sinx+cosx)
;④f(x)=
x
x2+x+1
;其中是F函数的序号为
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,若存在常数G>0使|f(x)|≤
G
100
|x|
对一切实数x均成立,则称函数f(x)为G函数.现给出下列函数:
f(x)=
2x2
x2-x+1

②f(x)=x2sinx;
③f(x)=2x(1-3x);
④f(x)是定义在R的奇函数,且对一切x1,x2,恒有|f(x1)+f(x2)|≤100|x1+x2|.
则其中是G函数的序号为
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数都成立,则称函数f(x) 为“倍约束函数”.给出下列函数,其中是“倍约束函数”的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•如东县三模)设函数f(x)的定义域为R,若存在常数k>0,使|f(x)|≤
k
2010
|x|对一切实数x均成立,则称f(x)为“诚毅”函数.给出下列函数:
①f(x)=x2;  
②f(x)=sinx+cosx;  
③f(x)=
x
x2+x+1
;  
④f(x)=3x+1;
其中f(x)是“诚毅”函数的序号为

查看答案和解析>>

同步练习册答案