精英家教网 > 高中数学 > 题目详情
已知抛物线C:y=x2+mx+2与经过A(0,1),B(2,3)两点的线段AB有公共点,则m的取值范围是(  )
A、(-∞,-1]∪[3,+∞)B、[3,+∞)C、(-∞,-1]D、[-1,3]
分析:线段AB:y=x+1(0≤x≤2),与y=x2+mx+2联立得x2+(m-1)x+1=0,已知条件即此方程在[0,2]内有根,至此划归为根的分布问题.令f(x)=x2+(m-1)x+1 又f(0)=1>0结合f(x)的图象求解.
解答:解:根据题意:线段AB:y=x+1(0≤x≤2),与y=x2+mx+2联立得:
x2+(m-1)x+1=0,
令f(x)=x2+(m-1)x+1 又f(0)=1>0,
即函数在[0,2]上有交点,
0<
1-m
2
<2
△=(m-1)2-4≥0
或f(2)<0
解得:m≤-1
故选C
点评:本题主要考查直线与抛物线的位置关系,同时还考查了转化思想,数形结合思想,函数思想等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,已知抛物线C:y=3x2(x≥0)与直线x=a.直线x=b(其中0≤a≤b)及x轴围成的曲边梯形(阴影部分)的面积可以由公式S=b3-a3来计算,则如图2,过抛物线C:y=3x2(x≥0)上一点A(点A在y轴和直线x=2之间)的切线为l,S1是抛物线y=3x2与切线l及直线y=0所围成图形的面积,S2是抛物线y=3x2与切线l及直线x=2所围成图形的面积,求面积s1+s2的最小值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=2x2上的点A(-1,2),直线l1过点A且与抛物线相切.直线l2:x=a(a>-1)交抛物线于点B,交直线l1于点D,记△ABD的面积为S1,抛物线和直线l1,l2所围成的图形面积为S2,则S1:S2=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=ax2(a>0)的焦点到准线的距离为
1
4
,且C上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,并且x1x2=-
1
2
,那么m=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(大纲卷解析版) 题型:解答题

已知抛物线C:y=(x+1)2与圆M:(x-1)2+()2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.

(Ⅰ)求r;

(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

【2012高考真题全国卷理21】(本小题满分12分)(注意:在试卷上作答无效

已知抛物线C:y=(x+1)2与圆M:(x-1)2+()2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.

(Ⅰ)求r;

(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.

查看答案和解析>>

同步练习册答案