分析 设a=lgx,b=lgy,将不等式组进行转化,利用线性规划的知识进行求解.
解答
解:(1)设a=lgx,b=lgy,则不等式等价为$\left\{\begin{array}{l}{1+a-b≥0}\\{a+b-1≤0}\\{b≥0}\end{array}\right.$,目标函数z=2a+b,
即b=-2a+z,
作出不等式组对应的平面区域如图:
平移直线b=-2a+z,当直线b=-2a+z经过点A(1,0)时,直线的截距最大,此时z最大,为z=2+0=2,
即2lgx+lgy的最大值为2.
故答案是:2.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com