精英家教网 > 高中数学 > 题目详情
12.设正实数x、y满足条件$\left\{\begin{array}{l}{1+lgx-lgy≥0}\\{lgx+lgy-1≤0}\\{lgy≥0}\end{array}\right.$,则2lgx+lgy的最大值为2.

分析 设a=lgx,b=lgy,将不等式组进行转化,利用线性规划的知识进行求解.

解答 解:(1)设a=lgx,b=lgy,则不等式等价为$\left\{\begin{array}{l}{1+a-b≥0}\\{a+b-1≤0}\\{b≥0}\end{array}\right.$,目标函数z=2a+b,
即b=-2a+z,
作出不等式组对应的平面区域如图:
平移直线b=-2a+z,当直线b=-2a+z经过点A(1,0)时,直线的截距最大,此时z最大,为z=2+0=2,
即2lgx+lgy的最大值为2.
故答案是:2.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求证:(1+$\frac{1}{3}$)2$•(1+\frac{1}{5})$2…(1+$\frac{1}{2n+1}$)2<n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若α,β都是锐角,且sin(α+β)=$\frac{3}{5}$,cosα=$\frac{\sqrt{5}}{5}$,则cosβ=$\frac{2\sqrt{5}}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l1:x+y+2=0,l:x+2y=0,求l1关于l的对称直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设sinθ-cosθ=$\frac{1}{2}$,且θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),求$\frac{cosθ}{1-si{n}^{2}θ}$-$\frac{sinθ}{co{s}^{2}θ-1}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求与直线3x+4y+5=0平行,且在两坐标轴上,其截距一个是另一个2倍的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sinα=0.2,则sin(-α)的值为(  )
A.0.2B.-0.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足:a1=2,an+1-2an=2n+1
(1)求证:数列{$\frac{{a}_{n}}{{2}^{n}}$}为等差数列,并求{an}的通项公式.
(2)若数列{bn}满足bn=$\frac{{a}_{n}}{{2}^{n}}$•cos(n+1)π,Sn为数列{bn}的前n项和,若对任意x∈N*.Sn<λn2恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知由正数组成的数列{an}的前n项和为Sn,首项a1=1,且满足Sn=($\frac{{a}_{n}+1}{2}$)2,则an=2n-1.

查看答案和解析>>

同步练习册答案