精英家教网 > 高中数学 > 题目详情
7.设sinθ-cosθ=$\frac{1}{2}$,且θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),求$\frac{cosθ}{1-si{n}^{2}θ}$-$\frac{sinθ}{co{s}^{2}θ-1}$的值.

分析 由条件利用同角三角函数的基本关系求得sinθcosθ以及sinθ+cosθ的值,从而求得要求的式子的值.

解答 解:∵sinθ-cosθ=$\frac{1}{2}$,且θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),∴1-2sinθcosθ=$\frac{1}{4}$,
求得sinθcosθ=$\frac{3}{8}$>0,∴θ∈(0,$\frac{π}{2}$ ),
∴sinθ+cosθ=$\sqrt{{(sinθ+cosθ)}^{2}}$=$\sqrt{1+2sinθcosθ}$=$\sqrt{1+\frac{3}{4}}$=$\frac{\sqrt{7}}{2}$.
∴$\frac{cosθ}{1-si{n}^{2}θ}$-$\frac{sinθ}{co{s}^{2}θ-1}$=$\frac{cosθ}{{cos}^{2}θ}$+$\frac{sinθ}{{sin}^{2}θ}$=$\frac{1}{cosθ}$+$\frac{1}{sinθ}$=$\frac{sinθ+cosθ}{sinθcosθ}$=$\frac{\frac{\sqrt{7}}{2}}{\frac{3}{8}}$=$\frac{4\sqrt{7}}{3}$.

点评 本题主要考查同角三角函数的基本关系进行求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.定义域为(-∞,0)∪(0,+∞)的函数f(x)不恒为0,且对于定义域内的任意实数x,y都有f(xy)=$\frac{f(y)}{x}$+$\frac{f(x)}{y}$成立,则f(x)(  )
A.是奇函数,但不是偶函数B.是偶函数,但不是奇函数
C.既是奇函数,又是偶函数D.既不是奇函数,又不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.用“五点法”作函数y=2sinx,x∈[0,2π]的图象时,应取的五个关键点分别为(0,0);($\frac{π}{2}$,2);(π,0);($\frac{3π}{2},-2$);(2π,0)..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设△ABC的内角∠A、∠B、∠C所对的边分别为a、b、c,且2cos(A-B)=1+4cos(A+C)cos(B+C).
(1)求∠C的值;
(2)若a=5,c=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x,y满足$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥1}\\{x≤3}\end{array}\right.$,则ax-2y(0<a<2)的最大值为5,则ax-2y的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设正实数x、y满足条件$\left\{\begin{array}{l}{1+lgx-lgy≥0}\\{lgx+lgy-1≤0}\\{lgy≥0}\end{array}\right.$,则2lgx+lgy的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.sin($\frac{π}{4}$+α)sin($\frac{π}{4}$-α)=$\frac{1}{6}$,cos2α等于$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a为正实数,y=f(x)为奇函数,当x<0时,y=x+$\frac{a}{x}$+7,若y≥1-a,对一切x≥0成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.证明:幂函数f(x)=$\frac{1}{\sqrt{x}}$在(0,+∞)上是减函数.

查看答案和解析>>

同步练习册答案