精英家教网 > 高中数学 > 题目详情
2.已知x,y满足$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥1}\\{x≤3}\end{array}\right.$,则ax-2y(0<a<2)的最大值为5,则ax-2y的最小值为-3.

分析 首先画出平面区域,分析z=ax-2y取最大值 的位置,得到a的值,然后求最小值.

解答 解:不等式组表示的平面区域如图:

设z=ax-2y,则y=$\frac{a}{2}x-\frac{z}{2}$,0<a<2,则0<$\frac{a}{2}$<1,z的最大值为5,所以当过B点时$-\frac{z}{2}$最小,z最大,由$\left\{\begin{array}{l}{x+y=1}\\{x=3}\end{array}\right.$得B(3,-2),所以5=3a-2(-2),解得a=$\frac{1}{3}$,
所以z的最小值是过C(3,2)时的值,为$\frac{1}{3}×3-2×2=-3$.
故答案为:-3.

点评 本题考查了简单线性规划问题,关键是由题意明确z取最大值时的几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.复数z=(2m2-3m-2)+(m2-m)i(m∈R)在复平面上对应的点位于第二象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知tanθ与$\frac{1}{tanθ}$是方程x2-2x+2m=0的两根,则sinθ等于(  )
A.$\frac{\sqrt{2}}{2}$B.±$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正方形ABCD中,AB=1,E、F分别是BC、CD的中点,求tan∠EAF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不等式2${\;}^{{x}^{2}-3}$>4x的解集是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设sinθ-cosθ=$\frac{1}{2}$,且θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),求$\frac{cosθ}{1-si{n}^{2}θ}$-$\frac{sinθ}{co{s}^{2}θ-1}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知(x+$\frac{1}{\root{3}{x}}$)n的展开式中,第三项和第四项的系数比是$\frac{1}{2}$,则展开式中的常数项是28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若复数z满足z-|z|=3-i,则z的虚部为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$=($\sqrt{2}$,$\sqrt{2}$),$\overrightarrow{b}$=(1,t),若向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为$\frac{π}{4}$,则实数t的值为0.

查看答案和解析>>

同步练习册答案