精英家教网 > 高中数学 > 题目详情
17.不等式2${\;}^{{x}^{2}-3}$>4x的解集是(-∞,-1)∪(3,+∞).

分析 由指数函数的单调性化指数不等式为一元二次不等式,求解一元二次不等式得答案.

解答 解:由2${\;}^{{x}^{2}-3}$>4x,得${2}^{{x}^{2}-3}>{2}^{2x}$,
即x2-3>2x,解得:x<-1或x>3.
∴不等式2${\;}^{{x}^{2}-3}$>4x的解集是(-∞,-1)∪(3,+∞).
故答案为:(-∞,-1)∪(3,+∞).

点评 本题考查指数不等式的解法,考查了指数函数的单调性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若f($\frac{1}{2}$+x)+f($\frac{1}{2}$-x)=2对任意的正实数x成立,则f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+f($\frac{3}{2015}$)+…f($\frac{2014}{2015}$)=2014.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=2sinxcosx-sinx+cosx(0≤x≤π).
(1)令t=sinx-cosx,用t表示y;
(2)已知t=$\sqrt{2}$sin(x-$\frac{π}{4}$),求t的取值范围,并分别求出y的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanα=$\frac{1}{2}$,则2sinα•cosa+cos2α等于$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解方程:cos2x-$\frac{1}{2}$cosx-$\frac{1}{2}$=0,x∈R,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x,y满足$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥1}\\{x≤3}\end{array}\right.$,则ax-2y(0<a<2)的最大值为5,则ax-2y的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…(-2008+2009i)+(2009-2010i)+(-2010+2011i).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数a,b满足$\left\{\begin{array}{l}{1-2a-b≤0}\\{4+4a-b≤0}\end{array}\right.$,则a+b的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知4cosx=3(1+sinx),求1+sinx的值.

查看答案和解析>>

同步练习册答案