精英家教网 > 高中数学 > 题目详情
13.已知tanθ与$\frac{1}{tanθ}$是方程x2-2x+2m=0的两根,则sinθ等于(  )
A.$\frac{\sqrt{2}}{2}$B.±$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 运用韦达定理,可得tanθ+$\frac{1}{tanθ}$=2,再由切化弦和二倍角公式,可得θ=kπ+$\frac{π}{4}$,k∈Z,即可得到sinθ的值.

解答 解:tanθ与$\frac{1}{tanθ}$是方程x2-2x+2m=0的两根,
即有tanθ+$\frac{1}{tanθ}$=2,
即为$\frac{sinθ}{cosθ}$+$\frac{cosθ}{sinθ}$=$\frac{si{n}^{2}θ+co{s}^{2}θ}{sinθcosθ}$=$\frac{1}{\frac{1}{2}sin2θ}$=2,
即有sin2θ=1,
解得2θ=2kπ+$\frac{π}{2}$,k∈Z,
即θ=kπ+$\frac{π}{4}$,k∈Z,
则sinθ=sin(kπ+$\frac{π}{4}$)=±$\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题考查三角函数的化简和求值,主要考查同角的基本关系式和二倍角公式的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,计算:$\frac{{x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}+2}{{x}^{2}+{x}^{-2}+3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2-3cos(x+$\frac{π}{4}$)
(1)当x取什么值时,f(x)取得最小值;
(2)求f(x)的对称轴,对称中心;
(3)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.sin105°cos15°-cos75°sin15°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=2sinxcosx-sinx+cosx(0≤x≤π).
(1)令t=sinx-cosx,用t表示y;
(2)已知t=$\sqrt{2}$sin(x-$\frac{π}{4}$),求t的取值范围,并分别求出y的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.用“五点法”作函数y=2sinx,x∈[0,2π]的图象时,应取的五个关键点分别为(0,0);($\frac{π}{2}$,2);(π,0);($\frac{3π}{2},-2$);(2π,0)..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanα=$\frac{1}{2}$,则2sinα•cosa+cos2α等于$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x,y满足$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥1}\\{x≤3}\end{array}\right.$,则ax-2y(0<a<2)的最大值为5,则ax-2y的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$\root{4}{a-2}$+(a+4)0有意义,则实数a的取值范围是{a|a≥2}.

查看答案和解析>>

同步练习册答案