精英家教网 > 高中数学 > 题目详情
如图,在边长为2的正方形ABCD中有一内切圆,某人为了用随机模拟的方法估计出该圆内阴影部分(旗帜)的面积S0,往正方形ABCD内随机撒了100粒品质相同 的豆子,结果有75粒落在圆内,有25粒落在阴影部分内,据此,有五种说法:
①估计S0=1;   
②估计S0=
π
2

③估计S0=
π
3
;  
④估计S0=
π
4

⑤估计S0=
4
3

那么以上说法中不正确的是
 
(填上所有不正确说法的序号)
考点:几何概型
专题:概率与统计
分析:先求出正方形的面积为4,设阴影部分的面积为S0,由概率的几何概型知阴影部分面积为正方形面积的
s0
2×2
=
25
75
s0
π
=
25
75
,由此可求阴影部分的面积.
解答: 解:解:设阴影部分的面积为S0
由概率的几何概型知,则
s0
2×2
=
25
75
s0
π
=
25
75

解得S0=1或S0=
π
4

故答案为:②④⑤
点评:本题考查概率的性质和应用;每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,短轴上端点为B,连接BF并延长交椭圆于点A,连接AO并延长交椭圆于点D,过B、F、O三点的圆的圆心为C.
(1)若C的坐标为(-1,1),求椭圆方程和圆C的方程;
(2)若AD为圆C的切线,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线ax+y-2=0与圆心为C的圆(x-2)2+(y-2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆C:x2+y2-8x+4y+19=0关于直线x+y+1=0对称的圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=
3
sin2x
1
n
=
1
3+cos2x
,设函数f(x)=
m
n

(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C的对边,若2
AC
BC
=
2
ab,c=2
2
,f(A)=4,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-4mx+1在[-2,+∞)为增函数,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的有
 

①函数y=log
1
2
(x2-2x-3)
的单调增区间是(-∞,1);
②若集合A={y|y=x-1},B={y|y=x2-1},则A∩B={(0,-1),(1,0)};
③若函数f(x)在(-∞,0),[0,+∞)都是单调增函数,则f(x)在(-∞,+∞)上也是增函数;
④函数y=
1-x2
|x+1|+|x-2|
是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

下表是某单位在2013年1-5月份用水量(单位:百吨)的一组数据:
月份x12345
用水量y4.5432.51.8
(Ⅰ)若由线性回归方程得到的预测数据与实际检验数据的误差不超过0.05,视为“预测可靠”,通过公式得
?
b
=-0.7
,那么由该单位前4个月的数据中所得到的线性回归方程预测5月份的用水量是否可靠?说明理由;
(Ⅱ)从这5个月中任取2个月的用水量,求所取2个月的用水量之和小于7(单位:百吨)的概率.
参考公式:回归直线方程是:
?
a
=
.
y
-
?
b
.
x
?
y
=
?
b
x+
?
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-x-2<0},B={x|y=lg
1-x
x+2
}
,在区间(-3,3)上任取一实数x,则x∈A∩B的概率为(  )
A、
1
3
B、
1
4
C、
1
8
D、
1
12

查看答案和解析>>

同步练习册答案