精英家教网 > 高中数学 > 题目详情

已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,
(1)求椭圆的方程;
(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.

(1);(2)存在

解析试题分析:(1)由离心率为,倾斜角为的直线交椭圆于两点,.通过联立直线方程与椭圆的方程,可求得的值.即可得结论.
(2)依题意可得符合要求的圆E,即为过点, 的三角形的外接圆.所以圆心在x轴上.根据题意写出圆E的方程.由于圆的存在必须要符合,椭圆上的点到点距离的最小值是,结合图形可得圆心E在线段上,半径最小.又由于点F已知,即可求得结论.
试题解析:(1)因为离心率为,所以
所以椭圆方程可化为:,直线的方程为,      2分
由方程组,得:,即, 4分
,则,               5分

所以,所以,椭圆方程是;      7分
(2)由椭圆的对称性,可以设,点轴上,设点
则圆的方程为
由内切圆定义知道,椭圆上的点到点距离的最小值是
设点是椭圆上任意一点,则, 9分
时,最小,所以①              10分
又圆过点,所以②              11分
在椭圆上,所以③                     12分
由①②③解得:
时,,不合,
综上:椭圆存在符合条件的内切圆,点的坐标是.        13分
考点:1.待定系数求椭圆方程.2.函数的最值.3.方程的思想解决解决解几问题.3.归纳化归的思想.4.运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=|ax-2|+bln x(x>0,实数a,b为常数).
(1)若a=1,f(x)在(0,+∞)上是单调增函数,求b的取值范围;
(2)若a≥2,b=1,求方程f(x)=在(0,1]上解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,从点P1(0,0)作轴的垂线交曲线于点,曲线在点处的切线与轴交于点.再从轴的垂线交曲线于点,依次重复上述过程得到一系列点:;…;,记点的坐标为).

(1)试求的关系();
(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60o(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到海岸线的距离BC=4km.D为海湾一侧海岸线CT上的一点,设CD=x(km),点D对跑道AB的视角为q.
(1)将tanq表示为x的函数;
(2)求点D的位置,使q取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,解不等式
(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点.
(1)求实数的值; 
(2)求函数的最小正周期及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)判断函数的奇偶性,并加以证明;
(2)用定义证明函数在区间上为增函数;
(3)若函数在区间上的最大值与最小值之和不小于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值.
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=x+-3,x∈[1,2].
(1)当b=2时,求f(x)的值域;
(2)若b为正实数,f(x)的最大值为M,最小值为m,且满足M-m≥4,求b的取值范围.

查看答案和解析>>

同步练习册答案