已知函数在与时都取得极值.
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围.
科目:高中数学 来源: 题型:解答题
已知奇函数 f (x) 在 (-¥,0)∪(0,+¥) 上有意义,且在 (0,+¥) 上是增函数,f (1) = 0,又函数 g(q) = sin 2q+ m cos q-2m,若集合M =" {m" | g(q) < 0},集合 N =" {m" | f [g(q)] < 0},求M∩N.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,.
(1)求椭圆的方程;
(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧、弧以及两条线段和围成的封闭图形.花坛设计周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米(),圆心角为弧度.
(1)求关于的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当为何值时,取得最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域内,乙中转站建在区域内.分界线固定,且=百米,边界线始终过点,边界线满足.
设()百米,百米.
(1)试将表示成的函数,并求出函数的解析式;
(2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com