精英家教网 > 高中数学 > 题目详情

已知圆x2+y2-4ax+2ay+20(a-1)=0.
(1)求证对任意实数a,该圆恒过一定点;
(2)若该圆与圆x2+y2=4相切,求a的值

(1)将圆的方程整理为(x2+y2-20)+a(-4x+2y+20)=0,令可得所以该圆恒过定点(4,-2).
(2)圆的方程可化为(x-2a)2+(y+a)2=5a2-20a+20
=5(a-2)2,所以圆心为(2a,a),半径为|a-2|.
若两圆外切,则=2+|a-2|,
即|a|=2+|a-2|,由此解得a=1+.
若两圆内切,则=|2-|a-2||,即|a|=|2-|a-2||,由此解得a=1-或a=1+(舍去).
综上所述,两圆相切时,a=1-或a=1+

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)过点Q 作圆C:的切线,切点为D,且QD=4.
(1)求的值;
(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点A,交y 轴于点B,设,求的最小值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C1为参数),曲线C2(t为参数).
(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;
(2)若把C1,C2上各点的纵坐标都拉伸为原来的两倍,分别得到曲线.写出的参数方程.公共点的个数和C公共点的个数是否相同?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x
-4)2+(y-5)2=4.
(1)若点M∈⊙ C1,  点N∈⊙C2,求|MN|的取值范围;
(2)若直线l过点A(4,0),且被圆C1截得的弦长为2 ,求直线l的方程;
(3)设P为平面上的点,满足:存在过点P的无数多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(15分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

点P在正方体ABCD﹣A1B1C1D1的底面ABCD所在平面上,E是A1A的中点,且∠EPA=∠D1PD,则点P的轨迹是(  )

A.直线 B.圆 C.抛物线 D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆方程为
 (1)求圆心轨迹的参数方程
(2)点(1)中曲线上的动点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分14分)
已知点,点是⊙上任意两个不同的点,且满足,设为弦的中点.

(1)求点的轨迹的方程;
(2)试探究在轨迹上是否存在这样的点:它到直线的距离恰好等于到点的距离?若存在,求出这样的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

双曲线的焦距为(    ).

A.1 B. C.3 D. 

查看答案和解析>>

同步练习册答案