Èçͼ£¬ÍÖÔ²E£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF1£¬ÓÒ½¹µãΪF2£¬ÀëÐÄÂÊe=
1
2
£®¹ýF1µÄÖ±Ïß½»ÍÖÔ²ÓÚA¡¢B Á½µã£¬µãAÔÚxÖáÉÏ·½£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª8£®
£¨1£©ÇóÍÖÔ²E µÄ·½³Ì£»
£¨2£©µ±AF1¡¢F1F2¡¢AF2 ³ÉµÈ±ÈÊýÁÐʱ£¬ÇóÖ±ÏßABµÄ·½³Ì£»
£¨3£©É趯ֱÏßl£ºy=kx+mÓëÍÖÔ²EÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãP£¬ÇÒÓëÖ±Ïßx=4 ÏཻÓÚµãQ£®ÊÔ̽¾¿£ºÔÚ×ø±êÆ½ÃæÄÚÊÇ·ñ´æÔÚ¶¨µãM£¬Ê¹µÃÒÔPQΪֱ¾¶µÄÔ²ºã¹ýµãM£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉ|AB|+|AF2|+|BF2|=8£¬½âµÃa=2£¬ÓÉ´ËÄÜÇó³öÍÖÔ²·½³Ì£®
£¨2£©ÓÉÒÑÖªµÃAF1•AF2=4£¬´Ó¶øAF1=AF2=2£¬¡÷AF1F2 ÊǵȱßÈý½ÇÐΣ¬ÓÉ´ËÄÜÇó³öÖ±ÏßABµÄ·½³Ì£®
£¨3£©ÓÉ
y=kx+m
x2
4
+
y2
3
=1
£¬µÃ94k2+3£©x2+8kmx+4m2-12=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí½áºÏÒÑÖªÌõ¼þÄÜÇó³ö´æÔÚ¶¨µãM£¨1£¬0£©£¬·ûºÏÌâÒ⣮
½â´ð£º £¨15·Ö£©
½â£º£¨1£©ÒòΪ|AB|+|AF2|+|BF2|=8£¬
¼´|AF1|+|F1B|+|AF2|+|BF2|=8 
¶ø|AF1|+|AF2|=|F1B|+|BF2|=2a£¬
¡à4a=8£¬½âµÃa=2£¬
¶øe=
c
a
=
1
2
£¬¡àc=
1
2
a=1
£¬¡àb2=a2-c2=3£®
ËùÇóÍÖÔ²·½³ÌΪ
x2
4
+
y2
3
=1
 
£¨2£©¡ßAF1¡¢F1F2¡¢AF2 ³ÉµÈ±ÈÊýÁУ¬¡àAF1•AF2=4£¬
ÓÖAF1+AF2=4£¬¡àAF1=AF2=2£¬¡÷AF1F2 ÊǵȱßÈý½ÇÐÎ
¡àÖ±ÏßAB µÄÇãб½ÇΪ
¦Ð
3
»ò
2¦Ð
3
£¬
¡àÖ±ÏßAB µÄ·½³ÌΪ
3
x-y+
3
=0»ò
3
x+y+
3
=0£®
£¨3£©ÓÉ
y=kx+m
x2
4
+
y2
3
=1
£¬µÃ94k2+3£©x2+8kmx+4m2-12=0£¬
¡÷=64k2m2-4£¨4k2+3£©£¨4m2-12£©=0£¬¼´4k2-m2+3=0 
x0=
4km
4k2+3
=-
4k
m
£¬y0=
3
m
£¬
¡àP(-
4k
m
£¬
3
m
)
£¬ÓÉ
y=kx+m
x=4
£®µÃQ£¨4£¬4k+m£©£¬
Éè´æÔÚM£¨x1£¬0£©£¬ÔòÓÉ
MP
MQ
=0
 
¿ÉµÃ-
16k
m
+
4kx1
m
-4x1+x12+
12k
m
+3=0
 
¡à(4x1-4)
k
m
+x12-4x1+3=0
£¬
ÓÉÓÚ¶ÔÈÎÒâm£¬k ºã³ÉÁ¢£¬ÁªÁ¢½âµÃx1=1£®
¹Ê´æÔÚ¶¨µãM£¨1£¬0£©£¬·ûºÏÌâÒ⣮
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÖ±Ïß·½³ÌµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄµãµÄ×ø±êÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Æ½ÃæÄÚ¸ø¶¨Èý¸öÏòÁ¿
a
=£¨3£¬2£©£¬
b
=£¨-1£¬2£©£¬
c
=£¨4£¬1£©£®
£¨1£©Èô£¨
a
+k
c
£©¡Í£¨2
b
-
a
£©£¬ÇóʵÊýk£»
£¨2£©ÈôÏòÁ¿
d
Âú×ã
d
¡Î
c
£¬ÇÒ|
d
|=
34
£¬ÇóÏòÁ¿
d
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x+
a
x
+b£¨x¡Ù0£©£®£¬ÆäÖÐa£¬b¡ÊR
£¨1£©ÈôÇúÏßy=f£¨x£©ÔÚµãP£¨2£¬f£¨2£©£©´¦µÄÇÐÏß·½³ÌΪy=3x+1£¬Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©µ±a£¾0ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÇúÏßC1£º
x=1+
2
cost
y=1+
2
sint
£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪp=2sin¦È£®
£¨1£©°ÑC1µÄ²ÎÊý·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÇóC1ÓëC2½»µãµÄ¼«×ø±ê£¨p¡Ý0£¬0¡Ü¦È£¼2¦Ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1µÄÖÐÐÄÔÚ×ø±êÔ­µã£¬Á½¸ö½¹µã·Ö±ðΪF1£¨-2£¬0£©£¬F2£¨2£¬0£©£¬µãA£¨2£¬3£©ÔÚÍÖÔ²C1ÉÏ£¬¹ýµãAµÄÖ±ÏßLÓëÅ×ÎïÏßC2£ºx2=4y½»ÓÚ²»Í¬Á½µãB£¬C£¬Å×ÎïÏßC2ÔÚµãB£¬C´¦µÄÇÐÏß·Ö±ðΪl1£¬l2£¬ÇÒl1Óël2½»ÓÚµãP£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚÂú×㣨|
PF1
|-|
AF1
|£©+£¨|
PF2
|-|
AF2
|£©=0µÄµãP£¿Èô´æÔÚ£¬Ö¸³öÕâÑùµÄµãPÓм¸¸ö£¬²¢Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãPÊÇÖ±Ïßl£º3x-4y+5=0Éϵ͝µã£¬¶¨µãQµÄ×ø±êΪ£¨1£¬1£©£¬ÇóÏß¶ÎPQ³¤µÄ×îСֵ¼°È¡µÃ×îСֵʱPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬ÔÚÆ½ÃæÄÚ£¬ABCDÊÇAB=2£¬BC=
2
µÄ¾ØÐΣ¬¡÷PABÊÇÕýÈý½ÇÐΣ¬½«¡÷PABÑØABÕÛÆð£¬Ê¹PC¡ÍBD£¬Èçͼ2£¬EΪABµÄÖе㣬ÉèÖ±Ïßl¹ýµãCÇÒ´¹Ö±ÓÚ¾ØÐÎABCDËùÔÚÆ½Ã棬µãFÊÇÖ±ÏßlÉϵÄÒ»¸ö¶¯µã£¬ÇÒÓëµãPλÓÚÆ½ÃæABCDµÄͬ²à£®

£¨1£©ÇóÖ¤£ºPE¡ÍÆ½ÃæABCD£»
£¨2£©Éè¶þÃæ½ÇF-PB-DµÄ´óСΪ¦È£¬Èô¦È=
¦Ð
4
£¬ÇóÏß¶ÎCFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
3
sin2x-2cos2x-1£¬x¡ÊR£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚºÍ×îСֵ£»
£¨¢ò£©ÔÚ¡÷ABCÖУ¬A£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªc=
3
£¬f£¨C£©=0£¬sinB=2sinA£¬Çóa£¬bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
4x£¬x¡Ü1
-x£¬x£¾1
£¬Èôf£¨-x£©=2£¬Ôòx=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸