精英家教网 > 高中数学 > 题目详情
4.在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点为M,又PA=AB=4,AD=CD,∠CDA=120°,点N是CD的中点.
(1)求证:平面PMN⊥平面PAB;
(2)求二面角A-PC-B的余弦值.

分析 (1)根据面面垂直的判定定理先证明MN⊥平面PAB即可证明平面PMN⊥平面PAB;
(2)建立空间坐标系,求出平面的法向量,利用向量法即可求二面角A-PC-B的余弦值.

解答 证明:(1)∵△ABC是正三角形,AB=BC,
在△ACD中,AD=CD,则△ABD≌△CDB,
∴M为AC的中点,
∵点N是CD的中点,∴MN∥AD,
又∵PA⊥平面ABCD,∴PA⊥AD.
∵∠CDA=120°,∴,∠DAC=30°,
∵∠BAC=60°,∴∠BAD=90°,即AB⊥AD,
又PA∩AC=A,∴AD⊥平面PAB.
∴MN⊥平面PAB.
∵MN?平面PMN,
∴平面PMN⊥平面PAB.
(2)∵∠BAD=∠BAC+∠CAD=90°,
∴AB⊥AD,分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,
∴B(4,0,0),C$(2,2\sqrt{3},0)$,$D(0,\frac{4\sqrt{3}}{3},0)$,P(0,0,4).
由(1)可知,$\overrightarrow{DB}=(4,-\frac{4\sqrt{3}}{3},0)$为平面PAC的法向量.
$\overrightarrow{PC}=(2,2\sqrt{3},-4)$,$\overrightarrow{PB}=(4,0,-4)$.
设平面PBC的一个法向量为$\overrightarrow{n}=(x,y,z)$,
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PC}=0}\\{\overrightarrow{n}•\overrightarrow{PB}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{2x+2\sqrt{3}y-4z=0}\\{4x-4z=0}\end{array}\right.$,
令z=3,得x=3,$y=\sqrt{3}$,则平面PBC的一个法向量为$\overrightarrow{n}=(3,\sqrt{3},3)$,
设二面角A-PC-B的大小为θ,则$cosθ=\frac{\overrightarrow{n}•\overrightarrow{DB}}{|\overrightarrow{n}|\;|\overrightarrow{DB}|}=\frac{\sqrt{7}}{7}$.
由题意值二面角A-PC-B是锐二面角,
则二面角A-PC-B余弦值为$\frac{\sqrt{7}}{7}$.

点评 本题主要考查空间面面垂直的判断以及二面角的求解,建立坐标系,求出平面的法向量,利用向量法是解决本题的关键.综合考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.当a=3时,写出阅读如图的程序框图的过程,算出n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(1+2x24的展开式中x4的系数等于24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用数学归纳法证明:对任意正偶数n,均有1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$),在验证n=2正确后,归纳假设应写成(  )
A.假设n=k(k∈N*)时命题成立B.假设n≥k(k∈N*)时命题成立
C.假设n=2k(k∈N*)时命题成立D.假设n=2(k+1)(k∈N*)时命题成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=sinx-$\sqrt{3}$cosx(-π≤x≤0)的单调增区间是[-$\frac{π}{6}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知一个几何体的三视图如图所示,则该几何体表面积为(  )
A.B.$\frac{15π}{4}$C.$\frac{3\sqrt{3}π}{4}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=$\frac{1}{4}$CD,下列结论:
①∠BAE=30°,②△ABE~△AEF,③AE⊥EF,④△ADF~△ECF.
其中正确的有②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|x+1|+|x-a|.
(1)当a=2时,解不等式:f(x)≥5;
(2)若存在x0∈R,使得f(x0)<2,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有(  )
A.24种B.9种C.3种D.26种

查看答案和解析>>

同步练习册答案