精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=2$\sqrt{3}$sin xcos x-3sin2x-cos2x+2.
(1)求f(x)的最大值;
(2)若△ABC的内角A,B,C的对边分别为a,b,c,且满足$\frac{b}{a}$=$\sqrt{3}$,sin(2A+C)=2sin A+2sin Acos(A+C),求f(B)的值.

分析 (1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=2sin(2x+$\frac{π}{6}$),利用正弦函数的性质即可求得f(x)的最大值.
(2)由三角函数恒等变换的应用化简得sin C=2sin A,由正弦定理得c=2a.由余弦定理可求cosA的值,进而可求B,代入即可得解f(B)的值.

解答 解:(1)∵f(x)=$\sqrt{3}$sin 2x-3sin2x-cos2x+2(sin2x+cos2x)
=$\sqrt{3}$sin 2x+cos2x-sin2x
=$\sqrt{3}$sin 2x+cos 2x
=2sin(2x+$\frac{π}{6}$).
∴f(x)的最大值是2.
(2)由sin(2A+C)=2sin A+2sin Acos(A+C),得:
sin Acos (A+C)+cos Asin(A+C)=2sin A+2sin Acos (A+C);
化简得sin C=2sin A,
由正弦定理得c=2a.又b=$\sqrt{3}$a,
由余弦定理得:a2=b2+c2-2bccos A=3a2+4a2-4$\sqrt{3}$a2cos A,
∴cosA=$\frac{\sqrt{3}}{2}$,∴A=$\frac{π}{6}$,B=$\frac{π}{3}$,C=$\frac{π}{2}$,
∴f(B)=f($\frac{π}{3}$)=2sin$\frac{5π}{6}$=1.

点评 本题主要考查了三角函数恒等变换的应用,正弦函数的性质,正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.某中学为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用图的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为0.97小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.经过点P(0,-1)作直线l,若直线l与连接A(1,-2),B(2,1)的线段总有公共点,则斜率k的取值范围为(  )
A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设集合A={x|-4<x<2},B={x|x<1},则如图中阴影部分表示的集合为[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知B1,B2是双曲线$\frac{x^2}{4}$-$\frac{y^2}{5}$=1的虚轴顶点,F1,F2其焦点,P是双曲线上一点,圆C是△PF1F2的内切圆,则△CB1B2的面积为$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)图象上所有点的横坐标缩短为原来的一半,再向右平移$\frac{π}{6}$个单位长度得到函数y=sinx的图象,则ω,φ的值分别为(  )
A.$\frac{1}{2}$,$\frac{π}{6}$B.2,$\frac{π}{3}$C.2,$\frac{π}{6}$D.$\frac{1}{2}$,-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过双曲线Γ的右焦点,且倾斜角为$\frac{π}{2}$的直线l与双曲线Γ交地A,B两点,O是坐标原点,若∠AOB=∠OAB,则双曲线Γ的离心率为(  )
A.$\frac{\sqrt{3}+\sqrt{7}}{2}$B.$\frac{\sqrt{11}+\sqrt{33}}{2}$C.$\frac{\sqrt{3}+\sqrt{39}}{6}$D.$\frac{1+\sqrt{17}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知方程ax2+x+b=0.
(1)若方程的解集为{1},求实数a,b的值;
(2)若方程的解集为{1,3},求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{lnx}{a^2}-x$.
(I)若曲线f(x)在(1,f(1))处的切线与x轴平行,求函数f(x)的单调区间;
(II)当f(x)的最大值大于1-$\frac{2}{a^2}$时,求a的取值范围.

查看答案和解析>>

同步练习册答案