精英家教网 > 高中数学 > 题目详情
17.将函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)图象上所有点的横坐标缩短为原来的一半,再向右平移$\frac{π}{6}$个单位长度得到函数y=sinx的图象,则ω,φ的值分别为(  )
A.$\frac{1}{2}$,$\frac{π}{6}$B.2,$\frac{π}{3}$C.2,$\frac{π}{6}$D.$\frac{1}{2}$,-$\frac{π}{6}$

分析 根据三角函数的图象平移变换关系进行逆推即可得到结论.

解答 解:将y=sinx的图象向左平移$\frac{π}{6}$个单位长度定点y=sin(x+$\frac{π}{6}$),
然后图象上所有点的横坐标伸长为原来的2得y=sin($\frac{1}{2}$x+$\frac{π}{6}$),
∵f(x)=sin(ωx+φ),
∴ω=$\frac{1}{2}$,φ=$\frac{π}{6}$,
故选:A.

点评 本题主要考查三角函数解析式的求解,根据三角函数的图象变换关系,利用逆推法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}+2015x+sinx,x≥0}\\{-{x^2}+λx+cos(x+α),x<0}\end{array}}$是奇函数,则sinλα=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=2${\;}^{-{x^2}+2x+3}}$的值域为(0,16].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{4x}{{x}^{2}+1}$.
(1)求曲线f(x)上任意一点切线的斜率的取值范围;
(2)当m满足什么条件时,f(x)在区间(2m-1,m)为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2$\sqrt{3}$sin xcos x-3sin2x-cos2x+2.
(1)求f(x)的最大值;
(2)若△ABC的内角A,B,C的对边分别为a,b,c,且满足$\frac{b}{a}$=$\sqrt{3}$,sin(2A+C)=2sin A+2sin Acos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在区间(0,+∞)上不是增函数的是 (  )
A.y=2x+1B.y=3x2+1C.y=$\frac{2}{x}$D.y=3x2+x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线y=kx+1,椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1,试判断直线与椭圆的位置关系(  )
A.相切B.相离C.相交D.相切或相交

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=$\frac{\sqrt{12-{x}^{4}}+{x}^{2}}{{x}^{3}}$+4,(x∈[-1,0)∪(0,1])的最大值为A,最小值为B,则A+B=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,D是边BC上一点,且$\overrightarrow{BD}=3\overrightarrow{DC},P$是线段AD上一个动点,若$\overrightarrow{|{AD}|}=2$,则$\overrightarrow{PA}•({\overrightarrow{PB}+3\overrightarrow{PC}})$的最小值是(  )
A.-8B.-4C.-2D.0

查看答案和解析>>

同步练习册答案