【题目】已知椭圆的左、右焦点分别为,离心率为,圆:过椭圆的三个顶点,过点的直线(斜率存在且不为0)与椭圆交于两点.
(1)求椭圆的标准方程.
(2)证明:在轴上存在定点,使得为定值,并求出定点的坐标.
科目:高中数学 来源: 题型:
【题目】给出下列五个命题:
①直线平行于平面内的一条直线,则;
②若是锐角三角形,则;
③已知是等差数列的前项和,若,则;
④当时,不等式恒成立,则实数的取值范围为.
其中正确命题的序号为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,顶点P在底面的投影恰为正方形ABCD的中心且,设点M,N分别为线段PD,PO上的动点,已知当取得最小值时,动点M恰为PD的中点,则该四棱锥的外接球的表面积为____________.
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率为,直线与椭圆C交于A,B两点,且.
(1)求椭圆C的方程.
(2)不经过点的直线被圆截得的弦长与椭圆C的长轴长相等,且直线与椭圆C交于D,E两点,试判断的周长是否为定值?若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年“非洲猪瘟”过后,全国生猪价格逐步上涨,某大型养猪企业,欲将达到养殖周期的生猪全部出售,根据去年的销售记录,得到销售生猪的重量的频率分布直方图(如图所示).
(1)根据去年生猪重量的频率分布直方图,估计今年生猪出栏(达到养殖周期)时,生猪重量达不到270斤的概率(以频率代替概率);
(2)若假设该企业今年达到养殖周期的生猪出栏量为5000头,生猪市场价格是30元/斤,试估计该企业本养殖周期的销售收入是多少万元;
(3)若从本养殖周期的生猪中,任意选两头生猪,其重量达到270斤及以上的生猪数为随机变量,试求随机变量的分布列及方差.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com