【题目】给出下列五个命题:
①直线
平行于平面
内的一条直线,则
;
②若
是锐角三角形,则
;
③已知
是等差数列
的前
项和,若
,则
;
④当
时,不等式
恒成立,则实数
的取值范围为
.
其中正确命题的序号为___________.
科目:高中数学 来源: 题型:
【题目】在数列{an}中,
(c为常数,n∈N*),且a1,a2,a5成公比不为1的等比数列.
(1)求证:数列
是等差数列;
(2)求c的值;
(3)设bn=anan+1,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,平面
平面
,
,
,若
为
的中点.
![]()
(1)证明:
平面
;
(2)求异面直线
和
所成角;
(3)设线段
上有一点
,当
与平面
所成角的正弦值为
时,求
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-2ax-1+a,a∈R.
(1)若a=2,试求函数y=
(x>0)的最小值;
(2)对于任意的x∈[0,2],不等式f(x)≤a成立,试求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,离心率为
,圆
:
过椭圆
的三个顶点,过点
的直线
(斜率存在且不为0)与椭圆
交于
两点.
(1)求椭圆
的标准方程.
(2)证明:在
轴上存在定点
,使得
为定值,并求出定点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,一个长轴顶点在直线
上,若直线
与椭圆交于
,
两点,
为坐标原点,直线
的斜率为
,直线
的斜率为
.
(1)求该椭圆的方程.
(2)若
,试问
的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】日本数学家角谷静夫发现的“
猜想”是指:任取一个自然数,如果它是偶数,我们就把它除以
,如果它是奇数我们就把它乘
再加上
,在这样一个变换下,我们就得到了一个新的自然数。如果反复使用这个变换,我们就会得到一串自然数,猜想就是:反复进行上述运算后,最后结果为
,现根据此猜想设计一个程序框图如图所示,执行该程序框图输入的
,则输出
值为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com