精英家教网 > 高中数学 > 题目详情

【题目】日本数学家角谷静夫发现的“ 猜想”是指:任取一个自然数,如果它是偶数,我们就把它除以,如果它是奇数我们就把它乘再加上,在这样一个变换下,我们就得到了一个新的自然数。如果反复使用这个变换,我们就会得到一串自然数,猜想就是:反复进行上述运算后,最后结果为,现根据此猜想设计一个程序框图如图所示,执行该程序框图输入的,则输出值为( )

A. B. C. D.

【答案】D

【解析】

分析由已知中的程序语句可知该程序的功能是利用循环结构计算的值并输出相应的的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得结论.

详解:模拟程序的运行,

可得不满足条件是奇数,

不满足条件执行循环体,不满足是奇数,

不满足条件执行循环体,不满足是奇数,可得

不满足条件执行循环体,满足条件是奇数,

不满足条件执行循环体,不满足是奇数,

不满足条件执行循环体,不满足是奇数,

不满足条件执行循环体,不满足是奇数,

不满足条件执行循环体,不满足是奇数,

满足条件,退出循环,输出的值为故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知倾斜角为α的直线l过点A21).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系曲线C的极坐标方程为ρ2sinθ,直线l与曲线C分别交于PQ两点.

1)写出直线l的参数方程和曲线C的直角坐标方程.

2)求|APAQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产的一种电器的固定成本(即固定投资)为0.5万元,每生产一台这种电器还需可变成本(即另增加投资)25元,市场对这种电器的年需求量为5百台.已知这种电器的销售收入R与销售量t的关系可用抛物线表示,如图.

(注:销售量的单位:百台,销售收入与纯收益的单位:万元,生产成本=固定成本+可变成本,精确到1台和0.01万元)

1)写出销售收入R与销售量t之间的函数关系式;

2)若销售收入减去生产成本为纯收益,写出纯收益与销售量的函数关系式,并求销售量是多少时,纯收益最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).

(1)应收集多少位女生的样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击运动员在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.240.280.190.160.13.计算这名射击运动员在一次射击中:

1)射中10环或9环的概率;

2)射中8环以下的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位长度后得到函数的图象,则下列关于的说法正确的是(

A.最大值为1,图象关于直线对称

B.周期为,图象关于点对称

C.图象关于y轴对称,在上单调递减

D.上单调递增,且为偶函数

E.上单调递减,且为奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数图象在点处的切线方程;

(2)当时,讨论函数的单调性

(3)是否存在实数,对任意的 恒成立?若存在,求出的取值范围:若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是梯形,底面的中点.

()证明:

()与平面所成角的大小为,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于两点,且.

(Ⅰ)求抛物线的方程;

(Ⅱ)过点的两条直线分别交抛物线于点,线段的中点分别为.如果直线的倾斜角互余,求证:直线经过一定点.

查看答案和解析>>

同步练习册答案