精英家教网 > 高中数学 > 题目详情

【题目】某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).

(1)应收集多少位女生的样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.

附:

【答案】(1)90;(2);(3)有的把握认为“该校学生的每周平均课外阅读时间与性别有关”

【解析】

1)根据频率分布直方图进行求解即可.

2)由频率分布直方图先求出对应的频率,即可估计对应的概率.

3)利用独立性检验进行求解即可

130090,所以应收集90位女生的样本数据.

2)由频率分布直方图得12×(0.100+0.025)=0.75

所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75

3)由(2)知,300位学生中有300×0.75225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表

男生

女生

总计

每周平均体育运动时间

不超过4小时

45

30

75

每周平均体育运动时间

超过4小时

165

60

225

总计

210

90

300

结合列联表可算得K24.7623.841

所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数y与月份之间的回归直线方程+

(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;

(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2列联表:

不礼让斑马线

礼让斑马线

合计

驾龄不超过1年

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

能否据此判断有97.5的把握认为“礼让斑马线”行为与驾龄有关?

参考公式及数据:,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某地一天从时的温度变化曲线近似满足函数.

(1)求该地区这一段时间内温度的最大温差.

(2)若有一种细菌在之间可以生存,则在这段时间内,该细菌最多能存活多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:x∈R,ax2﹣2ax+1>0,命题q:指数函数f(x)=ax(a>0且a≠1)为减函数,则P是q的(  )

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为,现安排甲组研发新产品,乙组研发新产品.设甲,乙两组的研发是相互独立的.

(1)求至少有一种新产品研发成功的概率;

(2)若新产品研发成功,预计企业可获得万元,若新产品研发成功,预计企业可获得利润万元,求该企业可获得利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医院一天派出医生下乡医疗,派出医生人数及其概率如下:

医生人数

0

1

2

3

4

5人及以上

概率

0.1

0.16

0.3

0.2

0.2

0.04

求:(1)派出医生至多2人的概率;

(2)派出医生至少2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日本数学家角谷静夫发现的“ 猜想”是指:任取一个自然数,如果它是偶数,我们就把它除以,如果它是奇数我们就把它乘再加上,在这样一个变换下,我们就得到了一个新的自然数。如果反复使用这个变换,我们就会得到一串自然数,猜想就是:反复进行上述运算后,最后结果为,现根据此猜想设计一个程序框图如图所示,执行该程序框图输入的,则输出值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)

在平面直角坐标系中,点到点的距离之和为4.

(1)试求点AM的方程.

(2)若斜率为的直线l与轨迹M交于C,D两点,为轨迹M上不同于C,D的一点,记直线PC的斜率为,直线PD的斜率为,试问是否为定值.若是,求出该定值;若不同,请说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且对任意正整数,都有成立.记

求数列的通项公式;

(Ⅱ)设,数列的前项和为,求证:

查看答案和解析>>

同步练习册答案