【题目】已知数列的前项和为,且对任意正整数,都有成立.记.
(Ⅰ)求数列和的通项公式;
(Ⅱ)设,数列的前项和为,求证: .
【答案】(Ⅰ), (Ⅱ)见解析.
【解析】试题分析:(I)由成立,可得时, ,可得出数列为等比数列,从而可得数列的通项公式,根据对数的运算性质可得;(II)利用(I)的结论,可得,根据裂项求和求出数列的前项和为,再利用放缩法即可证明结论.
试题解析:(Ⅰ)在中,令得.
因为对任意正整数,都有成立, 时, ,
两式作差得, ,所以,
又,所以数列是以为首项,4为公比的等比数列,即,
∴
(Ⅱ)∵,
∴.
∴.
∴对任意, .
又,所以, 为关于的增函数,所以,
综上,
【方法点晴】本题主要考查等差数列的通项与等比数列的定义,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1) ;(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
科目:高中数学 来源: 题型:
【题目】关于函数图象的对称性与周期性,有下列说法:①若函数y=f(x)满足f(x+1)=f(3+x),则f(x)的一个周期为T=2;②若函数y=f(x)满足f(x+1)=f(3-x),则f(x)的图象关于直线x=2对称;③函数y=f(x+1)与函数y=f(3-x)的图象关于直线x=2对称;④若函数与函数f(x)的图象关于原点对称,则,其中正确的个数是()
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面五边形ABCDE中,AB∥CE,且AE=2,∠AEC=60°,CD=ED=,cos∠EDC=.将△CDE沿CE折起,使点D移动到P的位置,且AP=,得到四棱锥P-ABCE.
(1)求证:AP⊥平面ABCE;
(2)记平面PAB与平面PCE相交于直线l,求证:AB∥l.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x-1|+|x-a|,a∈R.
(Ⅰ)当a=4时,求不等式f(x)≥7的解集;
(Ⅱ)若f(x)≥5对x∈R恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥PABC中,不能证明AP⊥BC的条件是( )
A. AP⊥PB,AP⊥PC
B. AP⊥PB,BC⊥PB
C. 平面BPC⊥平面APC,BC⊥PC
D. AP⊥平面PBC
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求证:平面PBC⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设向量, ,记
(1)求函数f(x)的最小正周期;
(2)试用“五点法”画出函数f(x)在区间上的简图,并指出该函数的图象可由y=sin x(x∈R)的图象经过怎样的平移和伸缩变换得到;
(3)若函数g(x)=f(x)+m, 的最小值为2,试求出函数g(x)的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com