精英家教网 > 高中数学 > 题目详情

【题目】关于函数图象的对称性与周期性,有下列说法:若函数yf(x)满足f(x1)f(3x),则f(x)的一个周期为T2若函数yf(x)满足f(x1)f(3x),则f(x)的图象关于直线x2对称;函数yf(x1)与函数yf(3x)的图象关于直线x2对称;若函数与函数f(x)的图象关于原点对称,则,其中正确的个数是()

A. 1 B. 2

C. 3 D. 4

【答案】C

【解析】中,以代换,得,所以①正确;

上的两点,且,有,由,得,即关于直线对称,所以②正确;

函数的图象由的图象向左平移1个单位得到,而的图象由的图象关于轴对称得,再向右平移3个单位得到,即,于是与函数的图象关于直线对称,所以③错误;

是函数图象上的任意一点,点关于原点的对称点必在的图象上,有,即,即,所以④正确;故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论函数的单调性;

(2)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E ,其焦点为F1F2,离心率为,直线lx2y20x轴,y轴分别交于点AB

(1)若点A是椭圆E的一个顶点,求椭圆的方程;

(2)若线段AB上存在点P满足|PF1||PF2|2a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的长半轴为半径的圆与直线相切.

1)求椭圆的标准方程;

2)已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一张A4纸的长宽之比为 分别为, 的中点.现分别将,沿, 折起,且, 在平面同侧,下列命题正确的是__________(写出所有正确命题的序号)

, , , 四点共面;

当平面平面 平面

, 重合于点时,平面平面

, 重合于点时,设平面平面 ,则平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,讨论函数图像的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的左、右焦点为F1F2,设点F1F2与椭圆短轴的一个端点构成斜边长为4的直角三角形.

(1)求椭圆C的标准方程;

(2)ABP为椭圆C上三点,满足,记线段AB中点Q的轨迹为E,若直线lyx1与轨迹E交于MN两点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)(x∈D),若x∈D时,均有f′(x)<f(x)成立,则称函数f(x)是J函数.

(Ⅰ)当函数f(x)=x2+m(ex+x),x≥e是J函数时,求实数m的取值范围;

(Ⅱ)若函数g(x)为R上的J函数,试比较g(a)与ea-1g(1)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且对任意正整数,都有成立.记

求数列的通项公式;

(Ⅱ)设,数列的前项和为,求证:

查看答案和解析>>

同步练习册答案