【题目】已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求证:平面PBC⊥平面PCD.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x-a|+|2x-1|(a∈R).
(1)当a=-1时,求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ-2sinθ.
(Ⅰ)求C的参数方程;
(Ⅱ)若点A在圆C上,点B(3,0),求AB中点P到原点O的距离平方的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数在区间上的图象,为了得到这个函数的图象,只需将y=sinx的图象
A. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变
B. 向左平移至个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变
C. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变
D. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g=-sinxcosx-sin2x,将其图象向左移个单位,并向上移个单位,得到函数f=acos2+b的图象.
(Ⅰ)求实数a,b, 的值;
(Ⅱ)设函数φ=g-f,x∈,求函数φ的单调递增区间和最值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com