精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点.

(Ⅰ)求证:PC∥平面EBD;

(Ⅱ)求证:平面PBC⊥平面PCD.

【答案】(Ⅰ)见解析 (Ⅱ)见解析

【解析】试题分析:1)连,与交于,利用三角形的中位线,可得线线平行,从而可得线面平行;
2)证明,即可证得平面平面

试题解析:(Ⅰ)连接AC交BD与O,连接EO,

∵E、O分别为PA、AC的中点,

∴EO∥PC,

∵PC平面EBD,EO平面EBD

∴PC∥平面EBD

(Ⅱ)∵PD⊥平面ABCD, BC平面ABCD,

∴PD⊥BC,∵ABCD为正方形,∴BC⊥CD,

∵PD∩CD=D, PD、CD平面PCD

∴BC⊥平面PCD,又∵BC平面PBC,

∴平面PBC⊥平面PCD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,讨论函数图像的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)|2xa||2x1|(aR).

(1)a=-1时,求f(x)2的解集;

(2)f(x)|2x1|的解集包含集合,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ-2sinθ.

(Ⅰ)求C的参数方程;

(Ⅱ)若点A在圆C上,点B(3,0),求AB中点P到原点O的距离平方的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且对任意正整数,都有成立.记

求数列的通项公式;

(Ⅱ)设,数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x-1|.

(Ⅰ)解不等式f(x)+f(x+4)≥8;

(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数在区间上的图象,为了得到这个函数的图象,只需将y=sinx的图象

A. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

B. 向左平移至个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

C. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

D. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线yx+ln x在点(1,1)处的切线与曲线yax2+(a+2)x+1相切,则a________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gsinxcosxsin2x,将其图象向左移个单位,并向上移个单位,得到函数facos2b的图象.

(Ⅰ)求实数ab 的值;

(Ⅱ)设函数φgfx,求函数φ的单调递增区间和最值.

查看答案和解析>>

同步练习册答案