【题目】设向量, ,记
(1)求函数f(x)的最小正周期;
(2)试用“五点法”画出函数f(x)在区间上的简图,并指出该函数的图象可由y=sin x(x∈R)的图象经过怎样的平移和伸缩变换得到;
(3)若函数g(x)=f(x)+m, 的最小值为2,试求出函数g(x)的最大值.
【答案】(1);(2)见解析;(3)
【解析】试题分析:(1)利用平面向量的数量积公式、配角公式进行化简,再利用周期公式进行求解;(2)利用整体思想和“五点作图法”进行求解,再利用图象变换得到变化过程;(3)利用三角函数的单调性进行求解.
试题解析:(1)f(x)=a·b=sin xcos x+cos2x=sin 2x+
=sin(2x+)+,
∴函数f(x)的最小正周期T==π.
(2)列表如下:
x | - | ||||
2x+ | 0 | π | 2π | ||
sin(2x+) | 0 | 1 | 0 | -1 | 0 |
y | - |
描点,连线得函数f(x)在区间上的简图如图所示:
y=sin x的图象向左平移个单位长度后得到y=sin(x+)的图象,再保持纵坐标不变,横坐标缩短为原来的后得到y=sin(2x+)的图象,最后将y=sin(2x+)的图象向上平移个单位长度后得到y=sin(2x+)+的图象.
(3)g(x)=f(x)+m=sin(2x+)++m.
∵x∈,∴2x+∈,∴sin(2x+)∈,
∴g(x)的值域为.
又函数g(x)的最小值为2,∴m=2,∴g(x)max=+m=.
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的左、右焦点为F1,F2,设点F1,F2与椭圆短轴的一个端点构成斜边长为4的直角三角形.
(1)求椭圆C的标准方程;
(2)设A,B,P为椭圆C上三点,满足,记线段AB中点Q的轨迹为E,若直线l:y=x+1与轨迹E交于M,N两点,求|MN|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,,AC=AD=CD,E是AD的中点.
(Ⅰ)证明CE∥平面PAB;
(Ⅱ)证明:平面PAD⊥平面PCE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0),长轴长为4,离心率为.
(Ⅰ)椭圆的求椭圆的标准方程;
(Ⅱ)设过定点M(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角(O为坐标原点),求直线l的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数在区间上的图象,为了得到这个函数的图象,只需将y=sinx的图象
A. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变
B. 向左平移至个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变
C. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变
D. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(导学号:05856261)
某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(Ⅰ)下表是年龄的频率分布表,求正整数a,b的值;
(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组抽取的员工的人数分别是多少?
(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2x+b)ex,F(x)=bx-ln x,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求实数b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前n项和为,已知(p、q为常数, ),又, , .
(1)求p、q的值;
(2)求数列的通项公式;
(3)是否存在正整数m、n,使成立?若存在,求出所有符合条件的有序实数对;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com