精英家教网 > 高中数学 > 题目详情

【题目】设向量 ,记

(1)求函数f(x)的最小正周期;

(2)试用“五点法”画出函数f(x)在区间上的简图,并指出该函数的图象可由y=sin x(x∈R)的图象经过怎样的平移和伸缩变换得到;

(3)若函数g(x)=f(x)+m 的最小值为2,试求出函数g(x)的最大值.

【答案】1;(2见解析;(3

【解析】试题分析:(1)利用平面向量的数量积公式、配角公式进行化简,再利用周期公式进行求解(2)利用整体思想和“五点作图法”进行求解,再利用图象变换得到变化过程;(3)利用三角函数的单调性进行求解.

试题解析:(1)f(x)=a·bsin xcos x+cos2xsin 2x

=sin(2x)+

∴函数f(x)的最小正周期T=π.

(2)列表如下:

x

2x

0

π

sin(2x)

0

1

0

-1

0

y

描点,连线得函数f(x)在区间上的简图如图所示:

y=sin x的图象向左平移个单位长度后得到y=sin(x)的图象,再保持纵坐标不变,横坐标缩短为原来的后得到y=sin(2x)的图象,最后将y=sin(2x)的图象向上平移个单位长度后得到y=sin(2x)+的图象.

(3)g(x)=f(x)+m=sin(2x)+m.

x,∴2x,∴sin(2x)∈

g(x)的值域为.

又函数g(x)的最小值为2,∴m=2,∴g(x)maxm.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的左、右焦点为F1F2,设点F1F2与椭圆短轴的一个端点构成斜边长为4的直角三角形.

(1)求椭圆C的标准方程;

(2)ABP为椭圆C上三点,满足,记线段AB中点Q的轨迹为E,若直线lyx1与轨迹E交于MN两点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,,AC=AD=CD,E是AD的中点.

(Ⅰ)证明CE∥平面PAB;

(Ⅱ)证明:平面PAD⊥平面PCE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且对任意正整数,都有成立.记

求数列的通项公式;

(Ⅱ)设,数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0),长轴长为4,离心率为.

(Ⅰ)椭圆的求椭圆的标准方程;

(Ⅱ)设过定点M(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角(O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数在区间上的图象,为了得到这个函数的图象,只需将y=sinx的图象

A. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

B. 向左平移至个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

C. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

D. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856261)

某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(Ⅰ)下表是年龄的频率分布表,求正整数ab的值;

(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组抽取的员工的人数分别是多少?

(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(2xb)exF(x)bxln xbR.

(1)b<0,且存在区间M,使f(x)F(x)在区间M上具有相同的单调性,求实数b的取值范围;

(2)F(x1)>b对任意x(0,+)恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,已知pq为常数, ),又 .

1)求pq的值;

2)求数列的通项公式;

3)是否存在正整数mn,使成立?若存在,求出所有符合条件的有序实数对;若不存在,说明理由.

查看答案和解析>>

同步练习册答案