【题目】如图,平面五边形ABCDE中,AB∥CE,且AE=2,∠AEC=60°,CD=ED=
,cos∠EDC=
.将△CDE沿CE折起,使点D移动到P的位置,且AP=
,得到四棱锥P-ABCE.
(1)求证:AP⊥平面ABCE;
(2)记平面PAB与平面PCE相交于直线l,求证:AB∥l.
![]()
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:
(1)在
中,由已知结合余弦定理得
,连接
,可得
,在
中,由
,得
,同理
,然后利用线面垂直的判定可得
平面
;
(2)由
,且
平面
,
平面
,可得
平面
,又平面
平面
,结合面面平行的性质可得
.
试题解析:
(1)在△CDE中,
∵CD=ED=
,cos∠EDC=
,
由余弦定理,CE2=(
)2+(
)2-2×
×
×
=4,
∴CE=2.连接AC,
∵AE=2,∠AEC=60°,∴AC=2.
又∵AP=
,
∴在△PAE中,PA2+AE2=PE2,即AP⊥AE,同理AP⊥AC,而AC,AE平面ABCE,AC∩AE=A,
故AP⊥平面ABCE.
(2)∵AB∥CE,且CE平面PCE,AB平面PCE,
∴AB∥平面PCE.
又平面PAB∩平面PCE=l,∴AB∥l.
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
,其焦点为F1,F2,离心率为
,直线l:x+2y-2=0与x轴,y轴分别交于点A,B,
(1)若点A是椭圆E的一个顶点,求椭圆的方程;
(2)若线段AB上存在点P满足|PF1|+|PF2|=2a,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的左、右焦点为F1,F2,设点F1,F2与椭圆短轴的一个端点构成斜边长为4的直角三角形.
(1)求椭圆C的标准方程;
(2)设A,B,P为椭圆C上三点,满足
,记线段AB中点Q的轨迹为E,若直线l:y=x+1与轨迹E交于M,N两点,求|MN|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x)(x∈D),若x∈D时,均有f′(x)<f(x)成立,则称函数f(x)是J函数.
(Ⅰ)当函数f(x)=x2+m(ex+x),x≥e是J函数时,求实数m的取值范围;
(Ⅱ)若函数g(x)为R+上的J函数,试比较g(a)与ea-1g(1)的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
经过点
,离心率为
.
(1)求椭圆E的标准方程;
(2)若A1,A2分别是椭圆E的左、右顶点,过点A2作直线l与x轴垂直,点P是椭圆E上的任意一点(不同于椭圆E的四个顶点),连接PA1交直线l于点B,点Q为线段A2B的中点,求证:直线PQ与椭圆E只有一个公共点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x-a|+|2x-1|(a∈R).
(1)当a=-1时,求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,,AC=AD=CD,E是AD的中点.
(Ⅰ)证明CE∥平面PAB;
(Ⅱ)证明:平面PAD⊥平面PCE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2x+b)ex,F(x)=bx-ln x,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求实数b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求实数b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com