(本题14分)在(0,1]上定义函数![]()
又利用f(x)定义一个数列:取
,令![]()
1)当
时,写出这个数列;
2)当
时,写出这个数列;
科目:高中数学 来源:2011年福建省罗源县第一中学高一上学期期中考试数学 题型:解答题
((本题14分)定义:若函数
在某一区间D上任取两个实数
、
,且
,都有
,则称函数
在区间D上具有性质L。
(1)写出一个在其定义域上具有性质L的对数函数(不要求证明)。
(2)对于函数
,判断其在区间
上是否具有性质L?并用所给定义证明你的结论。
(3)若函数
在区间(0,1)上具有性质L,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三回头考联考理科数学试卷(解析版) 题型:解答题
(本题14分)已知函数
在
处取得极值,且在
处的切线的斜率为1。
(Ⅰ)求
的值及
的单调减区间;
(Ⅱ)设
>0,
>0,
,求证:
。
查看答案和解析>>
科目:高中数学 来源:海南省10-11学年高一下学期期末考试数学(1班) 题型:解答题
(本题满分14分)在直角坐标系xOy中,椭圆C1:
的左、右焦点分别为F1、F2.F2也是抛物线C2:
的焦点,点M为C1与C2在第一象限的交点,且
.
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足
,直线l∥MN,且与C1交于A、B两点,若
·
=0,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源:2011年福建省高一上学期期中考试数学 题型:解答题
((本题14分)定义:若函数
在某一区间D上任取两个实数
、
,且
,都有
,则称函数
在区间D上具有性质L。
(1)写出一个在其定义域上具有性质L的对数函数(不要求证明)。
(2)对于函数
,判断其在区间
上是否具有性质L?并用所给定义证明你的结论。
(3)若函数
在区间(0,1)上具有性质L,求实数
的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com