(本题14分)在(0,1]上定义函数
又利用f(x)定义一个数列:取,令
1)当时,写出这个数列;
2)当时,写出这个数列;
3)当,且由产生的数列从某一项开始以后均为常数,求科目:高中数学 来源:2011年福建省罗源县第一中学高一上学期期中考试数学 题型:解答题
((本题14分)定义:若函数在某一区间D上任取两个实数、,且,都有,则称函数在区间D上具有性质L。
(1)写出一个在其定义域上具有性质L的对数函数(不要求证明)。
(2)对于函数,判断其在区间上是否具有性质L?并用所给定义证明你的结论。
(3)若函数在区间(0,1)上具有性质L,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三回头考联考理科数学试卷(解析版) 题型:解答题
(本题14分)已知函数在处取得极值,且在处的切线的斜率为1。
(Ⅰ)求的值及的单调减区间;
(Ⅱ)设>0,>0,,求证:。
查看答案和解析>>
科目:高中数学 来源:海南省10-11学年高一下学期期末考试数学(1班) 题型:解答题
(本题满分14分)在直角坐标系xOy中,椭圆C1:的左、右焦点分别为F1、F2.F2也是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且.
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足,直线l∥MN,且与C1交于A、B两点,若·=0,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源:2011年福建省高一上学期期中考试数学 题型:解答题
((本题14分)定义:若函数在某一区间D上任取两个实数、,且,都有,则称函数在区间D上具有性质L。
(1)写出一个在其定义域上具有性质L的对数函数(不要求证明)。
(2)对于函数,判断其在区间上是否具有性质L?并用所给定义证明你的结论。
(3)若函数在区间(0,1)上具有性质L,求实数的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com